Experimental and Modeling of Tomato Slices Sorption Isotherms and Thin Layer Drying Kinetics for a Solar Drying Plant Design

Document Type : Research Article

Authors

Applied Thermodynamic Laboratory, National School of Engineers of Gabes Tunisia, Medina Street 6029, University of Gabes, TUNISIA

Abstract

In the present work, the sorption isotherms of tomato slices (TS) are obtained by the gravimetric method at different temperatures (50, 60, and 70 °C). After fitting the desorption curves, the Guggenheim-Anderson-de Boer (GAB) model is chosen as the most appropriate model for the experimental data of tomato slice desorption isotherm.  The isosteric heat of desorption is then determined by the Clausius-Clapeyron equation. Modeling of the convective drying kinetics is performed by experimental study of the effects of aerothermal conditions, such as temperature and hot air velocity. The drying characteristic curves are then fitted using MATLABR 2013 nonlinear regression- functions.  The parabolic model was found to be the most appropriate model for the experimental results of kinetic drying of tomato slices, with the highest R² correlation coefficient average value (0.9983) and the lowest RMSE average value (0.0119). The effective moisture diffusivity and the activation energy are tested by the second Fick's law. The values of effective moisture diffusivity ranged from 2.028 10-7 to 5.071 10–7 m²/s. The activation energy was calculated to be 42.140 kJ/mol.

Keywords

Main Subjects


[1] Perveen  R., Suleria H.A.R., Anjum F.M., Butt  M.S., Pasha  I., Ahmad S., Tomato (Solanum Lycopersicum) Carotenoids and Lycopenes Chemistry; Metabolism, Absorption, Nutrition, and Allied Health Claims- A Comprehensive Review, Crit. Rev. Food Sci. Nutr., 55 (7): 919–929 (2015).
[2] Rubén D., Gullon P., Pateiro M., Munekata P.E.S., Zhang W., Lorenzo J.M., Tomato as Potential Source of Natural Additives for Meat Industry, Antioxidants, 9(1): 73 (2020).
[3] Ochida C.O., Itodo A.U., Nwanganga P.A., A Review on Postharvest Storage, Processing and Preservation of Tomatoes (Lycopersicon Esculentum Mill), Asian Food Sci. J., 6(2): 1–10 (2018).
[4] Cheng H.M., Koutsidis G., Lodge J.K., Ashor A.W., Siervo M., Lara J., Lycopene and Tomato and Risk of Cardiovascular Diseases: A Systematic Review and Meta-Analysis of Epidemiological Evidence, Crit. Rev. Food Sci. Nutr., 59(1): 141–158 (2019).
[5] Badaoui O., Hanini S., Djebli A., Haddad B., Benhamou A., Experimental and Modelling Study of Tomato Pomace Waste Drying in a New Solar Greenhouse: Evaluation of New Drying Models, Renew. Energy, 133: 144–155 (2019).
[6] Burg P. Fraile P., Vitamin C Destruction During the Cooking of a Potato Dish, LWT - Food Sci. Technol., 28(50): 506–514 (1995).
[7] Sonawane A., Chauhan O.P., Semwal S.D., Semwal A.D., Drying Characteristics and Lycopene Degradation Kinetics of Tomato Soup, Chem. Data Collect., 35: 100757 (2021).
[8] Djebli A., Hanini S., Badaoui O., Boumahdi M., A New Approach to the Thermodynamics Study of Drying Tomatoes in Mixed Solar Dryer, Sol. Energy, 193:164–174 (2019).
[9] Dufera L.T., Hofacker W., Esper A., Hensel O., Physicochemical Quality of Twin Layer Solar Tunnel Dried Tomato Slices, Heliyon, 7(5): e07127 (2021).
[10] Azeez L., Adebisi S.A., Oyedeji A.O., Adetoro R.O, Tijani K.O, Bioactive Compounds’ Contents, Drying Kinetics and Mathematical Modelling of Tomato Slices Influenced by Drying Temperatures and Time, J. Saudi Soc. Agric. Sci., 18(2): 120–126 (2019).
[11] Miccio M., Pierri R., Cuccurullo G., Metallo A., Brachi P., Process Intensification of Tomato Residues Drying By Microwave Heating: Experiments and Simulation, Chem. Eng. Process. - Process Intensif., 156: 108082 (2020).
[12] Gaware T.J., Sutar N., Thorat B.N., Drying of Tomato Using Different Methods: Comparison of Dehydration and Rehydration Kinetics, Dry. Technol., 28(5): 651–658 (2010).
[13] Giovanelli G., Zanoni B., Lavelli V., Nani. R., Water Sorption, Drying and Antioxidant Properties of Dried Tomato products, J. Food Eng., 52(2): 135–141 (2002).
[14] Abbasi H., Layeghiniya N., Mohammadi S., Karimi S., Effect of Fruit Thickness on Microwave Drying Characteristics of Myrtus Communis L., Iran. J. Chem. Chem. Eng. (IJCCE), 41(1): 222-236 (2022).
[15] Khodaparast Haghi A., Ghanadzadeh H., Rondot D., Experimental Survey on Microwave Drying of Porous Media, Iran. J. Chem. Chem. Eng.(IJCCE), 24(2): 1–10 (2005).
[16] Honarvar B., Mowla D., Safekordi A.A., Experimental and Theoretical Investigation of Drying of Green Peas in a Fluidized Bed Dryer of Inert Particles Assisted by Infrared Heat Source, Iran. J. Chem. Chem. Eng. (IJCCE), 32(1): 83–94 (2013).
[17] Dehbozorgi F., Khorshidi Malahmadi J., Niyazi S., Improving Three Phase Modeling of Fluidized Bed Dryer, Iran. J. Chem. Chem. Eng., 33(2): 99–105 (2014).
[18] Taghinezhad E., Rasooli Sharabiani V., Kaveh M., Modeling and Optimization of Hybrid HIR Drying Variables for Processing of Parboiled Paddy Using Response Surface Methodology, Iran. J. Chem. Chem. Eng. (IJCCE), 38(4): 251–260 (2019).
[20] Mujumdar A.S., Current Status and Future Trends, Ind. Dry. Technol., 2001: 112–113 (2001).
[21] Seyedabadi E., Khojastehpour M., Abbaspour-Fard M.H, Convective Drying Simulation of Banana Slabs Considering Non-Isotropic Shrinkage Using FEM with the Arbitrary Lagrangian–Eulerian Method, Int. J. Food Prop., 20(1): S36–S49 (2017).
[22] Kaveh M., Jahanbakhshi A., Abbaspour-Gilandeh Y., Taghinezhad E., Moghimi. M.B.F, The Effect of Ultrasound Pre-Treatment on Quality, Drying, and Thermodynamic Attributes of Almond Kernel under Convective Dryer using ANNs and ANFIS Network, J. Food Process Eng., 41(7): 1–14 (2018).
[23] Süfer Ö., Sezer S., Demir H., Thin Layer Mathematical Modeling of Convective, Vacuum and Microwave Drying of Intact and Brined Onion Slices, J. Food Process. Preserv., 41(6): (2017).
[24] Torki Harchegan M., Sadeghi M., Ghanbarian D., Moheb A., Dehydration Characteristics of Whole Lemons in a Convective Hot Air Dryer, Iran. J. Chem. Chem. Eng. (IJCCE), 35(3): 65–73 (2016).
[25] Azzouz S., Hermassi I., Chouikh R., Guizani A., Belghith A., The Convective Drying of Grape Seeds: Effect of Shrinkage on Heat and Mass Transfer, J. Food Process Eng., 41(1): 1–8 (2018).
[26] Sajawal M., Rehman T.U., Ali H.M., Sajjad U., Raza A., Bhatti M.S., Experimental Thermal Performance Analysis of Finned Tube-Phase Change Material Based Double Pass Solar Air Heater, Case Stud. Therm. Eng., 15: 100543 (2019).
[27] Aboghrara A.M., Baharudin B.T.H.T., Alghoul M.A., Adam N.M., Hairuddi A.A., Hasan H.A, Performance Analysis of Solar Air Heater with Jet Impingement on Corrugated Absorber Plate, Case Stud. Therm. Eng., 10: 111–120 (2017).
[28] Mzad H., Bey K., Khelif R., Investigative Study of the Thermal Performance of a Trial Solar Air Heater, Case Stud. Therm. Eng., 13: 100373 (2019).
[29] Abu-Hamdeh N.H., Bantan R.A.R., Khoshvaght-Aliabadi M., Alimoradi A., Effects of Ribs on Thermal Performance of Curved Absorber Tube Used in Cylindrical Solar Collectors, Renew. Energy, 161: 1260–1275 (2020).
[32] Vijayan S., Arjunan T.V., Kumar. A., Fundamental Concepts of Drying, Sol. Dry. Technol. Green Energy Technol., 0(9789811038327): 3–38 (2017).
[33] Schiraldi A., Fessas D., Signorelli M., Water Activity In Biological Systems - A Review, Polish J. Food Nutr. Sci., 62(1): 5–13 (2012).
[34] Bourdoux S., Li D., Rajkovic A., Devlieghere F., Uyttendaele M., Performance of Drying Technologies to Ensure Microbial Safety of Dried Fruits and Vegetables, Compr. Rev. Food Sci. Food Saf., 15(6): 1056–1066 (2016).
[37] Smith S.E, The Sorption of Water Vapor by High Polymers, J. Am. Chem. Soc., 69(3) 646–651 (1947).
[38] Iglesias J., Chirife H.A, An Equation for fitting Uncommon Water Sorption Isotherms in Foods., Leb. und -Technologie, 14: 111–117 (1981).
[39] Castillo M.D., Martnez E.J., Gonzlez H.H.L., Pacin A.M., Resnik S.L., Study of Mathematical Models Applied to Sorption Isotherms of Argentinean Black Bean Varieties, J. Food Eng., 60(4): 343–348 (2003).
[42] Oswin C.R., The Kinetics of Package Life. III. The Isotherm, J. Soc. Chem. Ind., 65(12): 419–421 (1946).
[43] Chirife H.A., Iglesias J., Equations for fitting Water Sorption Isotherms of Foods: Part I. A Review, J. Food Technol., 13: 159–174 (1978).
[44] Halsey G., Physical Adsorption on NonUniform Surfaces, 931: (1948).
[45] Langmuir I., The Constitution and Fundamental Properties of Solids and Liquids. Part i. Solids, J. Am. Chem. Soc., 46: 1361–1362 (1916).
[46] Henderson S., A basic Concept of Equilibrium Moisture, Agric. Eng., 33: 29–32 (1952).
[47] Chung D., Pfost H., Adsorption and Desorption of Water Vapour by Cereal Grains and Their Products, Trans. ASEA, 10: 549–551 (1967).
[48] Jmai S., Bagane M., Kint T.M.Q., Di-calcium phosphate; Thermodynamics and Kinetics Study,
Int. J. Sci. Eng. Res., 9(5): 389–402 (2018).
[49] Abdenouri N., Idlimam A., Kouhila M., Sorption Isotherms and Thermodynamic Properties of Powdered Milk, Chem. Eng. Commun., 197(8): 1109–1125 (2010).
[50] Tsami E., Maroulis Z.B., Marinos-Kouris D., Saravacos G.D., Heat of sorption of water in dried fruits Int. J. Food Sci. Technol., 25(3): 350–359 (1990).
[51] Midilli A., Kucuk H., Yapar Z., A New Model for Single-Layer Drying, Dry. Technol., 20: 1503–1513 (2002).
[52] Henderson S., Progress in Developing the Thin Layer Drying Equation, Trans. Am. Soc. Agric. Eng., 17: 1167–1168 (1974).
[53] Darvishi H., Azadbakht M., Rezaeiasl A., Farhang A., Drying Characteristics of Sardine Fish Dried with Microwave Heating, J. Saudi Soc. Agric. Sci., 12(2): 121–127 (2013).
[54] Chandra P.K. Singh R.P, Applied Numerical Methods for Food and Agricultural Engineers, CRC Press. Boca Rat., 512: (1994).
[55] Yaldiz O., Ertekin C., Uzun H., Mathematical Modeling of Thin Layer Solar Drying of Sultana Grapes,  Energy, 26: 457–465 (2001).
[56] Verma L., Bucklin R., Endan J., Wratten F., Effects of Drying Air Parameters on Rice Drying Models,  Trans. Am. Soc. Agric. Eng., 28: 296–301, (1985).
[57] Wang C.,  Singh R., A Single Layer Drying Equation for Rough Rice, Trans. Am. Soc. Agric. Eng., 1–17 (1978).
[58] Henderson  M., Pabis S., Grain Drying Theory: IV the Effect of Airflow Rate on Drying Index, J. Agric. Eng. Res., 7: 85–89 (1962).
[59] Lewis W., The Rate of Drying of Solid Materials, Ind. Eng. Chem., 13: 427–432 (1921).
[60] Page G., Factors Influencing the Maximum Rate of Air Drying Shelled Corn in Thin-Layers, Purdue Univ. West Lafayette, Indiana (1949).
[61] Golmohammadi M., Foroughi-Dahr M., Rajabi-Hamaneh M., Shojamoradi A.R., Hashemi S.J., Study on Drying Kinetics of Paddy Rice: Intermittent Drying, Iran. J. Chem. Chem. Eng. (IJCCE), 35(3): 105–117 (2016).
[63] Viswanathan R., Jayas D.S., Hulasare R.B, Sorption Isotherms of Tomato Slices and Onion Shreds, Biosyst. Eng., 86(4): 465–472 (2003).
[64] Akanbi C.T., Adeyemi R.S., Ojo. A., Drying Characteristics and Sorption Isotherm of Tomato Slices, J. Food Eng., 73(2): 157–163 (2006).
[65] Wang N., Brennan J.G., Moisture Sorption Isotherm Characteristics of Potatoes at four Temperatures,
J. Food Eng., 14(4): 269–287 (1991).
[67] Demarchi S.M., Quintero Ruiz N.A., De Michelis A., Giner S.A., Sorption Characteristics of Rosehip, Apple and Tomato Pulp Formulations as Determined by Gravimetric and Hygrometric Methods, LWT - Food Sci. Technol., 52(1): 21–26 (2013).
[68] Chawla C., Kaur D., Oberoi D.P.S., Sogi D.S., Drying Characteristics, Sorption isotherms, and Lycopene Retention of Tomato Pulp, Dry. Technol., 26(10): 1257–1264 (2008).
[69] Tsami E., Net isosteric Heat of Sorption in Dried Fruits, J. Food Eng., 14 (4): 327–335 (1991).
[71] Doymaz I., Air-Drying Characteristics of Tomatoes, J. Food Eng., 78(4): 1291–1297 (2007).
[72] Rajkumar P., Kulanthaisami S., Raghavan G.S.V., Gariépy Y., Orsat V., Drying Kinetics of Tomato Slices in Vacuum Assisted Solar and Open Sun Drying Methods, Dry. Technol., 25(7–8): 1349–1357 (2007).
[73] Sogi D.S., Shivhare U.S., Garg S.K, Bawa A.S., Water Sorption Isotherm and Drying Characteristics of Tomato Seeds, Biosyst. Eng., 84(3): 297–301 (2003).
[74] Brygidyr A.M., Rzepecka M.A., McConnell M.B., Characterization and Drying of Tomato Paste Foam by Hot Air and Microwave Energy, Can. Inst. Food Sci. Technol. J., 10(4): 313–319 (1977).
[75] Michel Daguenet, Les Séchoirs Solaires: Théorie et Pratique, (1985).
[76] Nourhène B., Mohammed K., Nabil K., Experimental and Mathematical Investigations of Convective Solar Drying of Four Varieties of Olive Leaves, Food Bioprod. Process., 86(3): 176–184 (2008).
[77] Meziane S., Drying Kinetics of Olive Pomace in a Fluidized Bed Dryer, Energy Convers. Manag., 52(3): 1644–1649, (2011).
[78] Hosainpour A., Darvishi H., Nargesi F., Fadavi A., Ohmic Pre-Drying of Tomato Paste, Food Sci. Technol. Int., 20(3): 193–204 (2014).
[79] Demiray E., Tulek Y., Yilmaz Y., Degradation Kinetics of Lycopene, β-Carotene and Ascorbic Acid in Tomatoes During Hot Air Drying, LWT - Food Sci. Technol., 50(1): 172–176, (2013).
[80] Al-Harahsheh M., Al-Muhtaseb A.H., Magee T.R.A., Microwave Drying Kinetics of Tomato Pomace: Effect of Osmotic Dehydration, Chem. Eng. Process. Process Intensif., 48(1): 524–531 (2009).
[81] Demiray E., Tulek Y., Yilmaz Y., Degradation Kinetics of Lycopene, β-Carotene and Ascorbic Acid in Tomatoes During Hot Air Drying, LWT, 50(1): 172–176 (2013).
[82] Marfil P.H.M., Santos E.M., Telis V.R.N., Ascorbic Acid Degradation Kinetics in Tomatoes at Different Drying Conditions, Lwt, 41(9): 1642–1647 (2008)
[83] Erick César L.V., Ana Lilia C.M., Octavio G.V., Isaac P.F., Rogelio B.O., Thermal Performance of a Passive, Mixed-Type Solar Dryer for Tomato Slices (Solanum Lycopersicum), Renew. Energy, 147: 845–855 (2020).
[84] Revaskar V.A., Pisalkar P.S., Pathare P.B., Sharma G.P., Dehydration Kinetics of Onion Slices in Osmotic and Air Convective Drying Process, Res. Agric. Eng., 60(3): 92–99 (2014).
[85] Madamba P., Driscoll R., Buckle K., The Thin-Layer Drying Characteristics of Garlic Slices, J. Food Eng., 29: 75–97 (1996).
[86] Afolabi T.J., Tunde-Akintunde T.Y., Oyelade O.J., Influence of Drying Conditions on the Effective Moisture Diffusivity and Energy Requirements of Ginger Slices, J. Food Res., 3(5): 103 (2014).
[87] Al-Busoul M., Design of Fruits Solar Energy Dryer under Climatic Condition in Jordan, J. Power Energy Eng., 05(02):123–137 (2017).