New Schiff Base and Its Zn2+ Metallopolymer: Synthesis, Characterization and Solid-State Conductivity

Document Type : Research Article

Authors

School of Chemistry, Damghan University, Damghan, I.R. IRAN

Abstract

The N, N'-bis-pyridine-4-ylmethylene-1,2-diamine (Pyen) was prepared by a reaction of ethylene diamine and 4- pyridine carbaldehyde. The DA was synthesized by a reaction of 4- chloromethyl salicylaldehyde and Pyen. The new ionic Schiff base polymer ligand (L) was synthesized by a reaction of DA and ethylene diamine in methanol at refluxed conditions. The ionic Zn2+mettallo Schiff base polymer was synthesized by reaction of L and ZnCl2 in methanol at refluxed conditions. The synthesized compounds were characterized by various analytical and spectral methods. The chemical composition and functional group identification of the synthesized compounds were confirmed by CHN analysis, FT-IR, 1H-NMR spectroscopy, and mass spectrometry. The molecular weight of the L and ZnL was determined by size exclusion chromatography with the results of the Mw= 6441.4 and 14212 for L and ZnL, respectively. The XRD pattern of the L and ZnL exhibited an amorphous character with low crystallinity. The SEM images showed shapeless plates with narrow valleys in the case of L and deep pores in the case of ZnL. The TEM images revealed a cluster of scaffold structures or agglomerated structures of the polymers. The solid-state conductivity of the L and ZnL was studied and the results showed that the conductivity increased by increasing the temperature from 300K to 400K. This behavior confirms the semiconducting properties of L and ZnL. The calculated solid-state conductivity of L in this temperature range (4.18×10-10-1.04× 10-5 Ω−1 m−1) is higher than the calculated solid-state conductivity of ZnL(1.45×10-11-3.12×10-9 Ω−1 m−1) whereas the calculated activation energy (of conductivity) for ZnL (0.19 ev) is lower than the calculated activation energy of conductivity (0.29ev) for L.

Keywords

Main Subjects


[1] Benhaoua C., Ammari A., Bassaid S., Belfedal A., Dehbi A., Physical and Chemical Properties of Dimedone “Base Schiff” for Organic Semiconductor Applications, J. Electron. Mater., 48: 7792-7798 (2019).
[2] Wang Y. Q., Pan Y., Gao W. Q., Wu Y., Liu C. H., Zhu Y.Y., Construction of Optical Active Metallo-Supramolecular Polymers from Enantiopure Bis-Pybox Ligands, Tetrahedron, 75: 3809-3814 (2019).
[3] Abd-El-Aziz A. S., Abdelghani A. A., Mishra A. K., Optical and Biological Properties of Metal-Containing Macromolecules, J. Inorg. Organomet. Polym. Mater., 30: 3-41 (2020).
[5] Novozhilova M.V., Smirnova E. A., Polozhentseva J. A., Danilova J.A., Chepurnaya I.A., Karushev M.P., Timonov A.M., Multielectron Redox Processes in Polymeric Cobalt Complexes with N2O2 Schiff Base Ligands, Electrochim. Acta, 282: 105-115 (2018).
[6] Novozhilova M., Anischenko D., Chepurnaya I., Dmitrieva E., Malev V., Timonov A., Karushev M., Metal-Centered Redox Activity in a Polymeric Cobalt (II) Complex of a Sterically Hindered Salen Type Ligand, Electrochim. Acta, 353: 136496 (2020).
[8] Heeger A. J., Semiconducting Polymers: the Third Generation, Chem. Soc. Rev., 39: 2354-2371 (2010).
[9] Sun J., Ma Q., Xue D., Shan W., Liu R., Dong B., Shao B., Polymer/inorganic Nanohybrids: An Attractive Materials for Analysis and Sensing, TrAC, Trends Anal. Chem., 140: 116273 (2021).
[10] Banasz R., Wałęsa-Chorab M., Polymeric Complexes of Transition Metal Ions as Electrochromic Materials: Synthesis and Properties, Coord. Chem. Rev., 389: 1-18 (2019).
[12] Nozha S. ., Morgan S.M., Ahmed S.A., El-Mogazy M.A., Diab M.A., El-Sonbati A.Z., Abou-Dobara M.I., Polymer Complexes. LXXIV. Synthesis, Characterization and Antimicrobial Activity Studies of Polymer Complexes of Some Transition Metals with Bis-Bidentate Schiff Base, J. Mol. Struct., 1227: 129525 (2021).
[14] Khan S. A., Nami S. A., Bhat S. A., Kareem A., Nishat N., Synthesis, Characterization and Antimicrobial Study of Polymeric Transition Metal Complexes of Mn (II), Co (II), Ni (II), Cu (II) and Zn (II) , Microb. Pathog., 110: 414-425 (2017).
[15] Xie Y., Chen L., Zhang X., Chen S., Zhang M., Zhao W., Zhao C., Integrating Zwitterionic Polymer and Ag Nanoparticles on Polymeric Membrane Surface to Prepare Antifouling and Bactericidal Surface via Schiff-Based Layer-By-Layer Assembly, J. Colloid Interface Sci., 510: 308-317 (2018).
[17] Barbosa H.F., Attjioui M., Leitão A., Moerschbacher B.M., Cavalheiro É.T., Characterization, Solubility and Biological Activity of Amphihilic Biopolymeric Schiff Bases Synthesized Using Chitosans, Carbohydr. Polym., 220: 1-11 (2019).
[19] Kaczmarek M. T., Zabiszak M., Nowak M., Jastrzab R., Lanthanides: Schiff Base Complexes, Applications in Cancer Diagnosis, Therapy, and Antibacterial Activity, Coord. Chem. Rev., 370: 42-54 (2018).
[21] Nguyen M.T., Jones R.A., Holliday B.J., Recent Advances in the Functional Applications of Conducting Metallopolymers, Coord. Chem. Rev., 377: 237-258 (2018).
[22] Gohy J.F., Lohmeijer B.G., Schubert U.S., Metallo Supramolecular Block Copolymer Micelles, Macromolecules., 35: 4560-4563 (2002).
[23] Xu L., Ho C.L., Liu L., Wong W.Y., Molecular/ Polymeric Metallaynes and Related Molecules: Solar Cell Materials and Devices, Coord. Chem. Rev., 373: 233-257 (2018).
[24] Mauro M., Bellemin‐Laponnaz S., Cebrián C., Metal‐Containing Polymers as Light‐Emitting and Light‐Responsive Materials and Beyond, Chem. Eur. J., 23: 17626-17636 (2017).
[26] Liu Q., Guo Y., Wu T., Chen M., Xie T., Wang P., Novel Terpyridine-bridged Parallel Dication Metallo-Bisviologens and Their Supramolecular Complexes, Chem. Res. Chin. Univ., 35: 229-234 (2019).
[27] Hassan M., Hassan E., Fadel S.M., Abou-Zeid R.E., Berglund L., Oksman K., Metallo-Terpyridine-Modified Cellulose Nanofiber Membranes for Papermaking Wastewater Purification, J. Inorg. Organomet. Polym. Mater., 28: 439-447 (2018).
[28] Zou F., Chen H., Chen S., Zhuo H., Development of Supramolecular Shape-Memory Polyurethanes Based on Cu (II)–Pyridine Coordination Interactions, J. Mater. Sci., 54: 5136-5148 (2019).
[29] Zhang K.Y., Liu S., Zhao Q., Huang W., Stimuli–Responsive Metallopolymers, Coord. Chem. Rev., 319: 180-195 (2016).
[30] Mondal S., Yoshida T., Rana U., Bera M. K., Higuchi M., Thermally Stable Electrochromic Devices Using Fe (II)-Based Metallo-Supramolecular Polymer,  Sol. Energy Mater. Sol. Cells, 200: 110000 (2019).
[31] El-Bindary A.A., El-Sonbati A.Z., Diab M.A., Ghoneim M.M., Serag L.S., Polymeric Complexes—LXII. Coordination Chemistry of Supramolecular Schiff Base Polymer Complexes—A review, J. Mol. Liq., 216: 318-329 (2016).
[32] Motakef-Kazemi N., Asadi A., Methylene Blue Adsorption from Aqueous Solution Using Zn2 (BDC)2 (DABCO) Metal Organic Framework and Its Polyurethane Nanocomposite, Iran. J. Chem. Chem. Eng. (IJCCE), 41(12): 4026-4038 (2022).
[33] Ranjbar M., Mirzaei S., Moshafi M. H., Bahadori A., Evaluation, Preparation and Characterization of Chitosan/ZnO Nanocomposite and Antibacterial Activity Against Pathogenic Microbial Strains, Iran. J. Chem. Chem. Eng. (IJCCE), 41(4): 1119-1125 (2022).
[34] Amangah M., Salami Kalajahi M., Roghani-Mamaqani H., Effect of 1, 2, 3-Trichloropropane as tri-Functional Monomer on Thermophysical Properties of Poly (Ethylene Tetrasulfide), Iran. J. Chem. Chem. Eng. (IJCCE), 39(2): 243-249 (2020).
[35] Zhou X.F., Fast Pyrolysis of Napier Grass Catalyzed by Encapsulated Cu ([H4] Salen), Iran. J. Chem. Chem. Eng.(IJCCE), 39(4): 243-249: 91-98 (2020).
[36] Bai L., Tao F., Li L., Deng A., Yan C., Li G., Wang L., A Simple Turn-On Fluorescent Chemosensor Based on Schiff Base-Terminated Water-Soluble Polymer for Selective Detection of Al3+ in 100% Aqueous Solution, Spectrochim. Acta, Part A, 214: 436-444 (2019).
[37] Xie M., Tang J., Fang G., Zhang M., Kong L., Zhu F., Zhan J., Biomass Schiff Base Polymer-Derived N-Doped Porous Carbon Embedded with CoO Nanodots for Adsorption and Catalytic Degradation of Chlorophenol by Peroxymonosulfate, J. Hazard. Mater., 384: 121345 (2020).
[38] Betiha M.A., El-Henawy S.B., Al-Sabagh A.M., Negm N. A., Mahmoud T., Experimental Evaluation of Cationic-Schiff Base Surfactants Based on 5-Chloromethyl Salicylaldehyde for Improving Crude Oil Recovery and Bactericide, J. Mol. Liq., 316: 113862 (2020).
[41] Dehno Khalaji A., Shahsavani E., Dusek M., Kucerakova M., Eigner V., Synthesis, Characterization, and Crystal Structures of a Thiosemicarbazone Ligand and its Silver(I) Complex, Iran. J. Chem. Chem. Eng. (IJCCE), 39(4): 23-28 (2020).
[42] Tang Z., Chen X., Pang X., Yang Y., Zhang X., Jing X., Stereoselective Polymerization of Rac-Lactide Using a Monoethylaluminum Schiff Base Complex, Biomacromolecules, 5:65-970 (2004).
[43] Nunn I., Eisen B., Benedix R., Kisch H., Control of Electrical Conductivity by Supramolecular Charge-Transfer Interactions in (Dithiolene) Metalate-Viologen Ion Pairs, Inorg. Chem., 33: 5079-5085 (1994).
[44] Karamian E., Abdellahi M., Khandan A., Abdellah S., Introducing the Fluorine Doped Natural Hydroxyapatite-Titania Nanobiocomposite Ceramic, J. Alloys. Compd, 679: 375-383 (2016).
[45] Sahmani S., Saber Samandari S., Khandan A., Aghdam M.M., Nonlinear Resonance Investigation of Nanoclay Based Bio-Nanocomposite Scaffolds with Enhanced Properties for Bone Substitute Applications, J. Alloys. Compd, 773: 636-653 (2019).
[46] Wanjari N., Chaudhary Bagade R.G., M.B., Paliwal L.J., Transition Metal Coordination Polymers: Microwave-assisted Synthesis, Morphology, Conductivity, and Decomposition Kinetics by TG/DTA Techniques, J. Chin. Adv. Mater. Soc., 6: 234-254 (2018).
[47] Abdellahi M., Najfinezhad, A., Saber-Samanadari S., Khandan A., Ghayour H., Zn and Zr Co-Doped M-Type Strontium Hexaferrite: Synthesis, Characterization and Hyperthermia Application, Chin. J. Phys., 56: 331-339 (2018).
[48] Ghayour H., Abdellahi M., Ozada, N., Jabbrzare S., Khandan A., Hyperthermia Application of Zinc Doped Nickel Ferrite Nanoparticles, J. Phys. Chem. Solids., 111: 464-472 (2017).
[50] Zafar F., Azam M., Sharmin E., Zafar H., Haq Q.M. R., Nishat N., Nanostructured Coordination Complexes/Polymers Derived from Cardanol:
“One-Pot, Two-Step” Solventless Synthesis and Characterization, RSC adv., 6: 6607-6622 (2016).
[51] Elshafaie A., Abdel-Rahman L.H., Abu-Dief A.M., Hamdan S.K., Ahmed A.M., Ibrahim E.M.M., Electric, Thermoelectric and Magnetic Properties of Nickel (II) Imine Nanocomplexes, Nano, 13: 1850074 (2018).
[52] Ibrahim E.M.M., Abdel-Rahman L.H., Abu-Dief A.M., Elshafaie A., Hamdan S.K., Ahmed A.M., The Electric and Thermoelectric Properties of Cu (II)-Schiff Base Nano-Complexes, Phys. Sci., 93: 055801 (2018).
[53] Abdel Rahman L.H., Abu‐Dief A.M., El‐Khatib R.M., Abdel‐Fatah S.M., Adam A.M., Ibrahim E.M.M., Sonochemical Synthesis, Structural Inspection and Semiconductor Behavior of Three New Nano Sized Cu (II), Co (II) and Ni (II) Chelates Based on Tri‐dentate NOO Imine Ligand as Precursors for Metal Oxides, Appl. Organomet. Chem., 32: e4174 (2018).
[54] Ibrahim E.M.M., Abdel-Rahman L.H., Abu-Dief A.M., Elshafaie A., Hamdan S. K., Ahmed A.M., The synthesis of CuO and NiO Nanoparticles by Facile Thermal Decomposition of Metal-Schiff Base Complexes and an Examination of Their Electric, Thermoelectric and Magnetic Properties, Mater. Res. Bull., 107: 492-497 (2018).
[57] Diabb M.A., El-Sonbati A.Z., Salem O.L., El-Ghamaz N.A., D.C. Electrical Conductivity and Conduction Mechanism of Some Azo Sulfonyl Quinoline Ligands and Uranyl Complexes, Spectrochim Acta A., 83: 61-66 (2011).
[58] Pandey R.K., Delwar Hossain M.D., Moriyama S., Higuchi M., ionic Conductivity of Ni (II)-Based Metallo-Supramolecular Polymers: Effects of Ligand Modification, J. Mat. Chem A., 1: 9016-9018 (2013).