Experimental and Numerical Analysis of the Co-Digestion Process of Municipal Sludge with Fruit and Vegetable Waste

Document Type : Research Article


1 Department of Chemical Engineering, Faculty of Technology, University of Tuzla, Urfeta Vejzagića 8, 75000 Tuzla, BOSNIA AND HERZEGOVINA

2 Department of Environmental Engineering, Faculty of Technology, University of Tuzla, UrfetaVejzagića 8, 75000 Tuzla, BOSNIA AND HERZEGOVINA


Anaerobic digestion is the most commonly applied process for waste sludge treatment, which enables obtaining energy from the produced biogas. Biogas produced by anaerobic co-digestion of sludge with various additives can be used as an alternative fuel. Mathematical modeling of the Anaerobic Digestion (AD) process can greatly explain and facilitate the full-scale implementation of this process. In this work, a simulation of the process of co-digestion of waste sludge with fruit and vegetable waste was carried out numerically, with Anaerobic digestion model no. 1 model (ADM1) and experimentally. The data used to run the ADM1 model and its verification were obtained in a batch pilot reactor (25 L) and refer to Total Solids (TS), Volatile Solids (VS), Total Chemical Oxygen Demand (TCOD), Total Kjeldahl Nitrogen (TKN), total ammonia nitrogen, volatile fatty acids (VFA), pH value, conductivity, biogas volume produced, and its composition. The verification of the model was performed with experimental data about the biogas production, methane production, and pH value. Also, a sensitivity analysis was performed by variation of 53 parameters, to identify the most sensitive parameters of the ADM1 model for the co-digestion process. The best agreement between experimental and simulated data was obtained for methane production, while the most sensitive parameters are the biochemical hydrogen inhibition constant and the half-saturation constant.


Main Subjects

[1] Deena S.R., Vickram S., Manikandan S., Subbaiya R., Karmegam N., Ravindran B., Chang, S.W., Awasthi M.K., Enhanced Biogas Production from Food Waste and Activated Sludge Using Advanced Techniques –A Review, Biores. Technol., 335 (2022).
[2] Lettinga G., Rebac S., Zeeman G., Challenge of Psychrophilic Anaerobic Wastewater Treatment,  Trends Biotechnol., 19(9): 363-370 (2001).
[3] Appels L., Baeyens J., Degrève J., Dewil R., Principles and Potential of the Anaerobic Digestion of Waste-Activated Sludge, Prog. Energy and Combust. Sci.34(6): 755-781 (2008).
[4] Antonopoulou G., Alexandropoulou M., Lytras C., Lyberatos G., Modeling of Anaerobic Digestion of Food Industry Wastes in Different Bioreactor Types, Waste Biomass Valorization6(3): 335-341 (2015).
[5] Calise F., Cappiello F.L., Denticed’Accadia M., Infante A., Vicidomini M., Modeling of the Anaerobic Digestion of Organic Wastes: Integration of Heat Transfer and Biochemical Aspects, Energies13(11): 2702 (2020).
[6] Perin J.K.H., Borth P.L.B., Torrecilhas A.R., da Cunha L.S., Kuroda E.K., Fernandes F., Optimization of Methane Production Parameters During Anaerobic Co-Digestion of Food Waste and Garden Waste, J. Cleaner Product., 272: 123130 (2020).
[7] Nazari A., Soltani M., Hosseinpour M., Alharbi W., Raahemifar K., Integrated Anaerobic Co-Digestion of Municipal Organic Waste to Biogas Using Geothermal and CHP Plants: A Comprehensive Analysis, Renew. Sust. Energ. Rev.152: 111709  (2021).
[8] Mason I.G., Mathematical Modelling of the Composting Process: A Review, Waste Manage., 26(1): 3-21. (2006).
[9] Liu Y., Huang T., Li X., Huang J., Peng D., Maurer C., Kranert M., Experiments and Modeling for Flexible Biogas Production by Co-Digestion of Food Waste and Sewage Sludge. Energies13(4): 818 (2020).
[11] Donoso-Bravo A., Mailier J., Martin C., Rodríguez J., Aceves-Lara C.A., Vande Wouwer A., Model Selection, Identification Andvalidation in Anaerobic Digestion: A Review, Water Res., 45: 5347–5364 (2011).
[12] Batstone D.J., Keller J., Angelidaki I., Kalyuzhnyi S.V., Pavlostathis S.G., Rozzi A., Vavilin V.A., The IWA Anaerobic Digestion Model No 1 (ADM1), Water Sci. Technol., 45(10): 65-73 (2002).
[13] Trucchia A., Frunzo L., Surrogate Based Global Sensitivity Analysis of ADM1-Based Anaerobic Digestion Model, J. Environ. Manage., 282: 111456 (2021).
[16] Bareha Y., Girault R., Guezel S., Chaker J., Trémier A., Modeling the Fate of Organic Nitrogen During Anaerobic Digestion: Development of a Bioaccessibility Based ADM1, Water Res.154: 298-315 (2019).
[17] Zhao X., Li L., Wu D., Xiao T., Ma Y., Peng X., Modified Anaerobic Digestion Model No. 1 for Modeling Methane Production from Food Waste
in Batch and Semi-Continuous Anaerobic Digestions
, Bioresour. Technol.271: 109-117 (2019).
[19] Qiu Y., Li C., Liu C., Hagos K., Co-Digestion Biomethane Production and the Effect of Nanoparticle: Kinetics Modeling and Microcalorimetry Studies, Appl. Biochem. Biotechnol., 193(2): 479-491 (2021).
[20] Kythreotou N., Florides G., Tassou S.A., A Review of Simple to Scientific Models for Anaerobic Digestion, Renew. Energy., 71: 701–714 (2014).
[21] Biernacki C., Jacques J., A Generative Model for Rank Data Based on Insertion Sort AlgorithmComput. Stat. Data Anal., 58: 162-176 (2013).
[22] Ji C., Kong C.X., Mei Z.L., Li J., A Review of the Anaerobic Digestion of Fruit and Vegetable Waste, Appl. Biochem. Biotechnol183(3): 906-922 (2017).
[25] Miramontes-Martínez L.R., Rivas-García P., Albalate-Ramírez A., Botello-Álvarez J.E., Escamilla-Alvarado C., Gomez-Gonzalez R., Santos-López I.A., Anaerobic Co-Digestion of Fruit and Vegetable Waste: Synergy and Process Stability AnalysisJ Air Waste Manag Assoc71(5): 620-632 (2021).
[26] APHA, “Standard Methods of Water and Wastewater”. 21st Edition, American Public Health Association, Washington, D.C., ISBN: 0875530478, 2-61. (2005).
[27] APHA, Standards Methods for the Examination of Water and Wastewater. 20th edition, American Public Health Association, Washington, D.C.(1998).
[28] Hashimoto A.G., Conversion of Straw-Manure Mixtures to Methane at Mesophilic and Thermophilic Temperatures, Biotechnol. Bioeng., 25: 185–200 (1983).
[29] International Standard ISO 6878, “Water Quality – Spectrometric Determination of Phosphorus Using Ammonium Molybdate”, International Organization for Standardization, Geneve, (1998).
[32] Xie S., Hai F.I., Zhan X., Guo W., Ngo H.H., Price W.E., Nghiem L.D., Anaerobic Co-Digestion: A Critical Review of Mathematical Modelling for Performance OptimizationBiores. Technol.222: 498-512 (2016).
[33] Rosén C., Jeppsson U., “Aspects on ADM1 Implementation within the BSM2 Framework”, Department of Industrial Electrical Engineering and Automation, Lund University, Lund, Sweden, 1-35 (2006).
[34] Rodríguez J., Lema J.M., Van Loosdrecht M.C.M., Kleerebezem R., Variable Stoichiometry with Thermodynamic Control in ADM1, Water Sci. Technol.54(4): 101-110 (2006).
[35] Fisgativa H., Zennaro B., Charnier C., Richard C., Accarion G., Béline F., Comprehensive Determination of Input State Variables Dataset Required for Anaerobic Digestion Modelling (ADM1) Based on Characterisation of Organic SubstratesData in brief29: 105212. (2020).
[36] Girault R., Bridoux G., Nauleau F., Poullain C., Buffet J., Steyer J.P., Béline, F., A Waste Characterisation Procedure for ADM1 Implementation Based on Degradation Kinetics, Water Res.46(13): 4099-4110 (2012).
[37] Mehariya S., Patel A.K., Obulisamy P.K., Punniyakotti E., Wong, J.W., Co-Digestion of Food Waste and Sewage Sludge for Methane Production: Current Status and Perspective, Biores. Technol., 265: 519-531 (2018).
[38] Danielson O., Modeling and Simulation of Anaerobic Manure Digestion into Biogas, Master's Thesis, Chalmers University of Technology Gothenburg, Sweden (2014).
[39] Chu F., Li Y., Xu Q., Ebie Y., Inamori Y., Kong N., A pH-and Temperature-Phased Two-Stage Process for Hydrogen and Methane Production from Food Waste. Int J Hydrogen Energ., 33: 4739–4746 (2008).
[40] Bedoić R., Špehar A., Puljko J., Čuček L., Ćosić B., Pukšec T., Duić N., Opportunities and Challenges: Experimental and Kinetic Analysis of Anaerobic Co-Digestion of Food Waste and Rendering Industry Streams for Biogas Production,  Renew. Sust. Energ. Rev.130: 109951 (2020).
[43] Chen X., Chen Z., Wang X., Huo C., Hu Z., Xiao B., Hu M., Application of ADM1 for Modeling of Biogas Production from Anaerobic Digestion of HydrillaverticillataBiores, Technol.211: 101-107 (2016).
[44] Trucchia A., Frunzo L., Surrogate Based Global Sensitivity Analysis of ADM1-Based Anaerobic Digestion ModelJ. Environ. Manage.282: 111456 (2021).
[45] Koch K., Gehring T., Lübken M., Wichern M., Harald Horn H., Mathematical Approach for Improving the Reliability of Parameter Calibration in Modeling of Anaerobic Digestion Processes, Biores. Technol., 55: 7-16 (2013).