Application of ASCA as a Multivariate Statistical Tool for Identification of Critical Parameters for Spectroscopic Determination of Dexamethasone

Document Type : Research Article

Authors

1 Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, I.R. IRAN

2 Department of Chemistry, University of Mohaghegh Ardabili, Ardabil, I.R. IRAN

3 Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, I.R. IRAN sciences

4 Faculty of Pharmacy, Near East University, Nicosia, North Cyprus, Mersin 10, TURKEY

5 Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, I.R. IRAN

Abstract

The main goal of this study was to apply chemometrics techniques such as (ANOVA)-Simultaneous Component Analysis (ASCA), Response Surface Methodology (RSM), and Central Composite Design (CCD) to identify important factors in Dexamethasone Sodium Phosphate (DSP) microextraction from plasma samples. This work proposes the pre-concentration and determination of DSP using a Dispersive Liquid-Liquid Microextraction (DLLME) and spectrophotometry in combination with chemometrics approaches. ASCA as a multivariate statistical tool was used to more thoroughly analyze the influencing factors on DLLME and their interactions. By ASCA the diversity of the data matrix was divided into five levels for four variables: the major impact of each experimental component (dispersive and extraction solvent volume, amount of salt, and incubation time), followed by the impact of each second-order interaction. The significance of each factor or interaction effect was determined by a permutation test. The outcomes were compared with the results of the ANOVA approach to determine the ideal circumstances for measuring the trace amount of DSP. Under optimal conditions, a linear calibration curve with a detection limit of 0.071 µg/mL in the 0.1-5 µg/mL range was obtained.

Keywords

Main Subjects


[1] Cohen E.M., Dexamethasone. In: “Analytical Profiles of Drug Substances”, Fflorey K, Academic Press (1973).
[2] Ahmed M.H., Hassan A., Dexamethasone for the Treatment of Coronavirus Disease (COVID-19): A Review, SN Compr. Clin. Med., 2(12): 2637-2646 (2020)
[3] Johnson D.B., Lopez M.J., Kelley B., “Dexamethasone”. PMID: 29489240 (2018).
[4] Lammers T., Sofias AM., van der Meel R., Schiffelers R., Storm G., Tacke F., et al. Dexamethasone Nanomedicines for COVID-19, Nat. Nanotechnol., 15(8): 622-624 (2020).
[5] Johnson R.M., Vinetz J.M., Dexamethasone in the Management of Covid-19, BMJ., 370: m2648 (2020).
[6] Lester M., Sahin A., Pasyar A., The Use of Dexamethasone in the Treatment of COVID-19, Ann. Med. Surg, 56: 218-219 (2020)
[8] Kwak H.W., D'amico D.J., Determination of Dexamethasone Sodium Phosphate in the Vitreous by High Performance Liquid Chromatography, Korean. j. Ophthalmol., 9(2): 79-83 (1995).
[9] Synaridou M.S., Andriotis E.G., Zacharis C.K., Fatouros D.G., Markopoulou C.K., Solid Dosage Forms of Dexamethasone Sodium Phosphate Intended for Pediatric Use: Formulation and Stability Studies, Pharmaceutics, 12(4): 354 (2020).
[10] Gonciarz A., Kus K., Szafarz M., Walczak M., Zakrzewska A., Szymura‐Oleksiak J., Capillary Electrophoresis/Frontal Analysis Versus Equilibrium Dialysis in Dexamethasone Sodium Phosphate‐Serum Albumin Binding Studies, Electrophoresis., 33(22): 3323-3330 (2012).
[11] Guo D., Chen N., Yang X., Hou L., Determination of Dexamethasone Sodium Phosphate Content in Fuyankang Cream by High-Performance Capillary Electrophoresis, Di 1 jun yi da xue xue bao, 24(7): 839-840 (2004).
[12] Baeyens V., Varesio E., Veuthey J-L., Gurny R., Determination of Dexamethasone in Tears by Capillary Electrophoresis, J. Chromatogr. B., 692(1): 222-226 (1997).
[13] Mazloum‐Ardakani M., Sadri N., Eslami V., Detection of Dexamethasone Sodium Phosphate in Blood Plasma: Application of Hematite in Electrochemical Sensors, Electroanalysis, 32(6): 1148-1154 (2020).
[14] Mehennaoui S., Poorahong S., Jimenez GC., Siaj M., Selection of High Affinity Aptamer-Ligand for Dexamethasone and Its Electrochemical Biosensor, Sci. Rep., 9(1): 1-9 (2019).
[16] Devi G.R., Prathyusha V., Shanthakumari K., Rahaman S., Development and Validation of Uv-Spectrophotometric Method for the Estimation of Dexamethasone Sodium Phosphate in Bulk and Pharmaceutical Dosage Form, Indo. Am. J. Pharm. Res., 3(7): 5055-5061 (2013).
[18] Al-Owaidi M.F., Alkhafaji SL., Mahood A.M., Quantitative Determination of Dexamethasone Sodium Phosphate in Bulk and Pharmaceuticals at Suitable pH values Using the Spectrophotometric Method, J. Adv. Pharm. Technol. Res., 12(4): 378-383 (2021).
[19] Zgoła-Grześkowiak A., Grześkowiak T., Dispersive Liquid-Liquid Microextraction, Trends Anal. Chem, 30(9): 1382-1399 (2011).
[20] Saraji M., Boroujeni M.K., Recent Developments in Dispersive Liquid–Liquid Microextraction, Anal. Bioanal. Chem, 406(8): 2027-2066 (2014).
[22] Tarley C.R.T., Silveira G., Dos Santos W.N.L., et al., Chemometric Tools in Electroanalytical Chemistry: Methods for Optimization Based on Factorial Design and Response Surface Methodology, Microchem. J., 92(1): 58-67 (2009).
[23]Baş D., Boyacı I.H., Modeling and Optimization I: Usability of Response Surface Methodology, J. Food. Eng., 78(3): 836-845 (2007).
[25] Chigbu P.E., Ukaegbu E.C., Nwanya J.C., On Comparing the Prediction Variances of Some Central Composite Designs in Spherical Regions: A Review, Statistica, 69(4): 285-298 (2009).
[26] Harwell M.R., Univariate and Multivariate Tests: ANOVA Versus MANOVA, Educ. Res. Q, 12 (3): 20-28 (1988).
[27] St L., Wold S., Analysis of Variance (ANOVA), Chemom. Intell. Lab. Syst., 6(4): 259-272 (1989).
[28] Cheng W., Sørensen K.M., Mongi R.J., Ndabikunze B.K., Chove B.E., Sun D-W., et al., A Comparative Study of Mango Solar Drying Methods by Visible and Near-Infrared Spectroscopy Coupled with ANOVA-Simultaneous Component Analysis (ASCA), Lwt, 112: 108214 (2019).
[30] Firmani P., Vitale R., Ruckebusch C., Marini F., ANOVA-Simultaneous Component Analysis Modelling of Low-Level-Fused Spectroscopic Data: A Food Chemistry Case-Study, Anal. Chim. Acta., 1125: 308-314 (2020).
[31] De Luca S., De Filippis M., Bucci R., Magrì A.D., Magrì A.L., Marini F., Characterization of the Effects of Different Roasting Conditions on Coffee Samples of Different Geographical Origins by HPLC-DAD, NIR and Chemometrics, Microchem. J., 129: 348-361 (2016).
[32] Smilde A.K., Jansen J.J., Hoefsloot H.C., Lamers R-J.A., Van Der Greef J., Timmerman ME., ANOVA-Simultaneous Component Analysis (ASCA): A New Tool for Analyzing Designed Metabolomics Data, Bioinformatics, 21(13): 3043-3048 (2005).
[33] Jansen J.J., Hoefsloot H.C., van der Greef J., Timmerman M.E., Westerhuis J.A., Smilde A.K., ASCA: Analysis of Multivariate Data Obtained from An Experimental Design, J. Chemom., 19(9): 469-481 (2005).
[34] Petronilho S., Rudnitskaya A., Coimbra M.A., Rocha S.M., Comprehensive Study of Variety Oenological Potential Using Statistic Tools for the Efficient Use of Non-Renewable Resources, Appl. Sci., 11(9): 4003 (2021).
[35] D’Alessandro A., Ballestrieri D., Strani L., Cocchi M., Durante C., Characterization of Basil Volatile Fraction and Study of Its Agronomic Variation by ASCA, Molecules, 26(13): 3842 (2021).
[36] Zwanenburg G., Hoefsloot H.C., Westerhuis J.A., Jansen J.J., Smilde A.K., ANOVA–Principal Component Analysis and ANOVA–Simultaneous Component Analysis: A Comparison, J Chemom, 25(10): 561-567 (2011).
[37] Anderson M., Braak C.T., Permutation Tests for Multi-Factorial Analysis of Variance, J. Stat. Comput. Simul., 73(2): 85-113 (2003).
[38] Bertinetto C., Engel J., Jansen J., ANOVA simultaneous Component Analysis: A Tutorial Review, Anal. Chim. Acta: X., 2020: 100061 (2020).
[39] Breig S.J.M., Luti K.J.K., Response Surface Methodology: A Review on iIts Applications and Challenges in Microbial Cultures, Mater. Today: Proc., 42: 2277-2284 (2021).
[40] Said Ka,M., Amin Ma, M., Overview on the Response Surface Methodology (RSM) in Extraction Processes, JASPE2(1): 8-17 (2015).
[41] Saqib M., Mumtaz M.W., Mahmood A., Abdullah M.I., Optimized Biodiesel Production and Environmental Assessment of Produced Biodiesel, Biotechnol. Bioprocess Eng., 17(3): 617-623 (2012).
[42] Naeem S, Ali M, Mahmood A., Optimization of Extraction Conditions for the Extraction of Phenolic Compounds from Moringa Oleifera Leaves, Pak. J. Pharm. Sci., 25(3): 535-541 (2012).
[43] Behera S.K., Meena H., Chakraborty S., Meikap B.C., Application of Response Surface Methodology (RSM) for Optimization of Leaching Parameters for Ash Reduction from Low-Grade Coal, Int. J. Min. Sci. Technol., 28(4): 621-629 (2018).