Thermal and Mechanical Properties of Borosilicate Glass to Kovar Alloys Joint

Document Type : Research Article


Department of Material Science, South Tehran Branch, Islamic Azad University,Tehran, I.R. IRAN


The aim of the current study was to find a reliable joint between Borosilicate glass and Kovar alloys. For this purpose, the Dilatometer test was applied to calculate the thermal expansion coefficient of glass and Kovar alloys, and the materials with lower differences in the thermal expansion coefficient were used to join the Kovar to glass. Due to the nonmetallic properties of glass, it is theoretically impossible to join glass to metal as it shows no wettability. Therefore, a material was applied as a sealer between Kovar and glass to solve this problem. The Kovar samples were oxidized in the N2-H2-H2O atmosphere to control the chemical composition and also form an oxide layer that does not contain Fe2O3. The tensile strength of the produced joints was investigated at different times and temperatures. The results showed that the highest tensile strength was 16.63 MPa which was achieved at 10 min and 1000°C.


Nicholas M., “Joining of Ceramics”, Chapman and Hall, London, (1990).
[2] Rawson H., Properties and Applications of Glass, Elsevier, Amsterdam, (1980).
[3] Boyd D., MacDowell J., Commercial Glasses, J. Am. Ceram. Soc., 24 (5): 45-50 (1986).
[4] Donald R., Preparation, Properties and Chemistry of Glass and Glass-Ceramic-to Metal Seals and Coatings, J. Mater. Sci., 28 (2): 2841-2886 (1993).
[5] Yi R., Chen C., Li Y., Peng H., Zhang H., Ren X., The Bonding Between Glass and Metal, J. Adv. Manuf. Technol., 111 (2): 963–983 (2020).
 [6] Fischer A., Eggert G., Stelzner J., When Glass and Metal Corrode Together, VI: Chalconatronite, Stud Conserv., 65(3): 152-159 (2020).
[7] Zhong L.,Wang J., Sheng H., Zhang Z., Mao Z., Formation of Monatomic Metallic Glasses through Ultrafast Liquid Quenching, Nature., 512(4): 177–180 (2014).
[8] Smeacetto F., Chrysanthou A., Sabato A., Javed H., la Pierre S., Salvo M., Ferraris M., Glass-to-metal Seals for Solid Oxide Cells at the Politecnico di Torino, an Overview, Int. J. Appl. Ceram. Technol., 19(1): 1017-1028 (2021).
[9] Dai S., Elisberg B., Calderone J., Lyon N., Sealing Glass-Ceramics with Near-Linear Thermal Strain, Part III: Stress Modeling of Strain and Strain Rate Matched Glass-Ceramic to Metal Seals, J. Am. Ceram. Soc., 100(2): 3652-3661 (2017).
[10]  Bae B., Hu K., Song J., Oh M., Ryu S., Jung H., Yoon C., Effects of ZnO and Cordierite Contents on the Wetting Properties of a Bi2O3–ZnO–B2O3 Glass Composite as a Low-Melting Sealing Glass, J. Korean Ceram. Soc., 59(2): 208-216 (2022).
[11] Staff M., Fernie J., Mallinson P., Whiting M., Yeomans J., Fabrication of a Glass-Ceramic-to-Metal Seal Between Ti–6Al–4V and a Strontium Boroaluminate Glass, Int. J. Appl. Ceram. Technol., 13(1): 956-965 (2016).
[12] Ni D., Cheng Y., Zhang J., Liu J., Zou J., Chen B., Wu H., Li H., Dong S., Han J., Zhang X., Fu Q., Zhang G., Advances in Ultra-High Temperature Ceramics, Composites, and Coatings, J. Adv. Ceram., 11(2),1-56 (2022).
[13] Zhao D., Wu D., Shi J., Niu F., Ma G., Microstructure and Mechanical Properties of Melt-Grown Alumina-Mullite/Glass Composites Fabricated by Directed Laser Deposition, J. Adv. Ceram., 11(5): 75–93 (2022).
[14] Liang Y., Ma M., Qian S., Zhuang H., Li K., Liu Z., Li Y., Biocompatibility of borosilicate glass-ceramics based LTCC materials for microfluidic biosensor Application, Int. J. Appl. Ceram. Technol., 17(4): 365-371 (2019).
[15]  Ren L., Luo X., Xia Y., Hu Y., Zhou H., Optimization of Borosilicate Glass/CaTiO3-TiO2 Composite via Altering Prefiring Temperature and Particle Size, Int. J. Appl. Ceram. Technol., 16(4): 77-87 (2018).
[16] Kumar R., Jan A., Bauchy M.,  Krishnan N., Effect of Irradiation on the Atomic Structure of Borosilicate Glasses, J. Am. Ceram. Soc., 104(4): 6194-6206 (2021).
[17]  Lonergan J., Lonergan C., Silverstein J., Cholsaipant P., McCloy J., Thermal Properties of Sodium Borosilicate Glasses as a Function of Sulfur Content, J. Am. Ceram. Soc., 103(3): 3610-3619 (2020).
[18] Sun M., Jahn S., Peng H., Zhang X., Wang T., Kowalski P., Properties of Irradiated Sodium Borosilicate Glasses from Experiment and Atomistic Simulations, J. Am. Ceram. Soc., 104 (2): 4479-4491 (2021).
[19] Wang Y., Jin C., Yang Z., Wang D., Effects of Cu Interlayers on the Microstructure and Mechanical Properties of Al2O3/AgCuTi/Kovar Brazed Joints, Int. J. Appl. Ceram. Technol., 16(3): 896-906 (2018).
[20] Wang Z., Gao Z., Chu J., Qiu D., Niu J., Low Temperature Sealing Process and Properties of Kovar Alloy to DM305 Electronic Glass, J. Met., 10(2): 1-13 (2020).
[21] Luo D., Leng W., Shen Z.,  Effect of Kovar Alloy Oxidized in Simulated N2/H2O Atmosphere on its Sealing with Glass, J. Univ. Sci. Technol. Beijing., 15(2): 267-271(2008).
[22] lou D., Shen Z., Atmosphere, Acta Metal Sin-Engl.,  21(3): 409-418 (2008).
[23] Joseph A., Richard M., Fundamentals of Glass-to-Metal Bonding: VIII, Nature of Wetting and Adherence, J. Am. Ceram. Soc., 45(1): 592–596 (1962).
[24] Kuo C., Cheng P., Chou C., Matched Glass-to-Kovar Seals in N2 and Ar Atmospheres, Int. J. Miner. Metall., 20(9): 874-890 (2013).
[25] Khayat S., Dashtizad A., Kaflou A., Effects of Temperature, Time, Atmosphere and Sealing Geometry on defects Occurred in Borosilicate Glass-Kovar Alloy Seal, Int. CERAM., 47(2):2008-2015 (2021).
[26] Luo D., Shen, Z, Wetting and spreading behavior of borosilicate glass on Kovar, J. Alloy. Compd., 477(1): 407–413 (2009).
[27] Kuo C. H., Cheng Y., Chou, P.,  Matched Glass-to-Kovar Seals in N2 and Ar Atmospheres. Int. J. Miner. Met. Mater., 20(4): 874–882 (2013).
[28] Pablos-Martín A., Rodríguez-López S., Maria J., Processing Technologies for Sealing Glasses and Glass-Ceramics, Int. J. Appl. Glass Sci., 11(3): 552-568 (2020).
[29] Vedishcheva N., López-Grande A., Muñoz F., Chemical Approach to the Glass Structure and Properties, Int. J. Appl. Glass Sci., 13(3): 359-369 (2022).
[30] Lei D., Wang Z., Li J., Wang. Z, Experimental Study of Glass to Metal Seals for Parabolic Trough Receivers,  Renew. Energy., 48(3): 85-91 (2012).