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ABSTRACT: Hydrogen as a green fuel has attracted enormous attention recently. Although hydrogen 

combustion produces no harmful by-products, hydrogen production can be almost disastrous. Hydrogen 

production mainly originates from fossil fuels, and more than 80% of hydrogen production is produced using 

fossil fuel reformation with CO2 formation as a by-product. Light hydrocarbon gases, predominantly 

methane, are extensively used for hydrogen production. While methane reforming is an economical  

and efficient process, decarburization of flue gas can be a challenge. Processes involving chemical looping 

can be used to mitigate these challenges, and they are favorable for simultaneous CO2 capture during 

hydrogen generation. Intelligent models can help have accurate monitoring of such plants. The aim of this 

paper is to provide an Artificial Intelligence (AI) based approach to model a Sorption-Enhanced Chemical-

Looping Reforming (SECLR) unit. To this end first, a SECLR unit was simulated using ASPEN Plus version 

11. Then the simulation results were validated by experimental data, and the SECLR unit went through 31000 

different scenarios. The derived data from ASPEN Plus was modeled and simulated with machine learning 

methods to estimate the CH4 conversion, H2 Purity, and CO2 removal in the SECLR process. Artificial neural 

networks, ensemble learning, and support vector machine methods were developed to predict the CH4 

conversion, H2 Purity, and CO2 removal in a SECLR unit. All three models could provide satisfactory results 

for predicting CH4 conversion, CO2 removal, and H2 Purity. According to statistical evaluations, Artificial 

Neural Network (ANN) outperformed Support Vector Machine (SVM) and ensemble learning in producing 

results with lower error values and higher accuracy with an average 5.23e-5 of error and R2 of 0.9864. 
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INTRODUCTION 

Various hydrocarbons can be exploited to produce 

hydrogen via reforming reactions. Hydrogen can be  

an essential component for various applications [1], for 

instance, as a feed in the production of many chemicals 

such as ammonia and fertilizers, as well as in the refining 

industry. Hydrogen is also regarded as the fuel of the 

future[2]. The only product of hydrogen combustion is 

water. Therefore, the problems with fossil fuel 

inflammation, such as greenhouse gases and pollutants 

emissions, can be assuaged drastically. Hydrogen is 

mainly produced via methane steam reforming reaction. 

However, hydrocarbon reforming units can also be CO2-

producing spots [3, 4]. Globally increasing of energy 

demand led to a rise in energy consumption by gas and oil 

companies. Thus, this increased demand leads to more 

emission of CO2 [5]. Iran contains significant sections of 

oil and gas industries which rank Iran as the 7th country 

with the most pollutants in industry[6].  An environment-

friendly approach to producing hydrogen is the 

synchronous production of hydrogen alongside a CO2 

capture unit. Processes containing chemical looping such 

as Chemical-Looping Reforming (CLR), Sorption-

Enhanced (SE) reforming, and a hybrid method of these 

two methods (SECLR) can provide such an approach [7-11]. 

The principle of chemical-looping is based on methane 

oxidation via cyclic reduction and oxidation of a solid 

oxygen carrier. The separation of products from nitrogen 

can be costly; therefore, in this method, the products  

are not mixed with the nitrogen in the air [10]. Chemical-

looping process also includes other cyclic reactions 

between solids and gases. One such cycle is the calcium 

looping, in which calcium oxide (CaO) as an oxygen 

carrier is calcinated and carbonated with CO2. This hybrid 

process facilitates the production of hydrogen alongside  

a CO2 capture unit without needing further separation after 

the accomplishment of the reactions [12]. Precise 

assessment is an irresolvable segment of a hydrogen production 

plant. Machine learning methods have been proven  

to be efficacious in evaluating the performance of SECLR 

units [13]. Norouzi et al [14-27] studied CO2 capture  

in a variety of industrial cases. They reported the energetic 

analysis of a SMR reactor along with CO2 turbine, heavy 

oil thermal conversion using formic acid followed  

by a CO2 capture process, and simulation of methane gas 

production process from animal waste in a reactor.  

Shalaby et al. [28] proposed a machine learning approach 

for optimizing and modeling CO2 post-combustion units. 

They developed machine learning models to predict 

outputs of a post-combustion unit and developed a fine 

tree, Matern Gaussian Process Regression (GPR), rational 

quadratic GPR, and squared exponential GPR models and 

compared the results of these methods with a feed-forward 

ANN model. Also, they used Genetic Algorithms (GA) 

and Sequential Quadratic Programming (SQP) to optimize 

operating parameters Bai et al. [29] developed a machine 

learning model for post-combustion CO2 capture with the 

bootstrap aggregated Extreme Learning Machine (ELM) 

to predict CO2 capture rate and CO2 capture level.  

Valera et al. [30] developed an ANN for the estimation of 

the volumetric mass transfer coefficient of a spray tower. 

In their simulation, the gas flow rate was variable,  

and the other conditions were constant. They employed 

many different training algorithms and transfer functions 

and claimed that ANN could be used efficiently to predict 

essential variables. Li et al. [13] developed an ANN  

to assess the performance of a post-combustion CO2 

capture unit. They developed their model under steady  

and unsteady states. ANN was employed to predict CO2 

capture rate and CO2 capture level in their work. To our 

knowledge and reviewing literature enlightened that an 

AI-based study of SECLR unit has not been accomplished 

yet. In this work, the SECLR unit was simulated via ASPEN 

Plus version 11 and then validated by experimental data 

reported by Ryden et al. [31]. Afterward, the validated 

model has undergone 31000 different scenarios. Then, 

using the obtained data of various scenarios, data-based 

models, namely ANN, SVM, and ensemble learning, were 

developed to predict CH4 conversion, H2 Purity, and CO2 

removal of a SECLR unit. MATLAB® software (version 

2014b) was employed to develop these intelligent models. 

Finally, the performance of the proposed machine learning 

methods was reported and compared. Scheme 1 indicates 

the Overall flowchart of the simulation, validation, and 

developing AI methods.  

 

Methodologies 

ASPEN Plus 

Simulation of a SECLR unit was accomplished  

via ASPEN Plus version 11. Fig. 1 shows a schematic of 

the process flowsheet in Aspen Plus software. 

To develop the model following assumptions were assumed: 
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Table1: Blocks of Aspen Plus flowsheet 

Blocks name in 

Aspen Flowsheet 
Apparatus 

HX1 Counter-current shell & tube heat exchanger 

HX2 Counter-current shell & tube heat exchanger 

HX3 Counter-current shell  & tube heat exchanger 

FUEL-REA Rgibbs reactor 

CAL-REA Rgibbs reactor 

AIR-REA Rgibbs reactor 

CYCLON1 Gas-solid cyclone separator 

CYCLON2 Gas-solid cyclone separator 

CYCLON3 Gas-solid cyclone separator 

 

• The process is steady-state. 

• Thermodynamic equilibrium is reached in all of the 

reactors, FUEL-REA (Fuel reactor), CAL-REA 

(Calcination reactor), and AIR-REA (Air reactor). 

• The separation between solids and gas in all of the 

cyclones (CYCLON1, CYCLON2, and CYCLON3) is 

perfect. 

Table 1 indicates the name and abbreviations for all of the 

blocks in the process flowsheet. 

In this simulation, the reactant stream (CH4 and H2O), 

before entering the reforming reactor (FUEL-REA),  

is preheated isothermally through heat exchangers (HX1, 

HX2, and HX3). Although the desired product of methane 

steam reforming is hydrogen, other species in the 

reforming reactor output stream are CH4, H2O, CO, 

CaCO3, and Ni. To separate the Ni and CaCO3 from gas, 

the reforming reactor output stream (H2+Solids) is carried 

to a cyclone (CYCLONE1). The stream of hydrogen 

(HTOH2) passes through a heat exchanger (HX1) where it 

cools and preheats the reactant stream. To calcine CaCO3 

into CaO and CO2 stream (Ni+ CaCO3) is carried to a 

calcination reactor (CALCINA). A cyclone (CYCLONE2) 

is used to separate CO2 gas from the solids of the 

(CO2+SOLI) stream. The separated CO2 is passed through 

a heat exchanger (HX2) to further preheat the reactant 

stream. To form NiO as an oxygen carrier, the stream (NI 

+CAO) is carried to a reactor (AIR-REA) where the Ni 

reacts adiabatically with air. To separate N2 from the solids 

stream (CaO+NiO) is fed to a cyclone  (CYCLONE3). The 

solids are subsequently fed to the fuel reactor as stream 

NIO–CAO. The hot N2 in stream N2, is passed through a 

heat exchanger (HX3), exchanging heat with feed 

(REACTANT2). The feed stream is heated up to the  

 
 

Schem.1: Overall flowchart of the simulation, validation, and 

developing AI methods 

 

reactor temperature and then is fed to the reactor (FUEL-REA). 

Reactions occur in the RGIBBS reactor, which is based on 

the minimization of Gibbs free energy. Total Gibbs energy 

of a reaction system is expressed as following [7]: 

Gtotal=∑ niμi

N

i=1

 (1) 

Where 𝝁𝒊the chemical potential of chemical species and n 

indicates the number of moles of chemical.   

μ
i
=μ

i
0+RT ln

y
i
φ

i
P

P0

=μ
i
0+RTln ai 

(2) 

Where μ
i
0 is the pure ideal gas standard chemical potential. 

yi and φ
i
are the vapor molar fraction and the fugacity 

coefficient of a species in a mixture, respectively.  

We consider P and P0 as the overall and reference 

pressures in a given temperature, respectively. Substituting 

Eq. (2) in Eq. (1) gives: 

 

Gtotal=∑ niμi
0

N

i=1

=∑ niRT ln αi

N

i=1

 (3) 
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Table 2: Validation of simulation results with Ryden et al. [31] results 

Flow rate (mol/hr) Simulation Reference Deviation (%) 

Fuel Reactor product gas 

4CH 0.02908 0.030 3.06 

O2H 1.265 1.328 4.74 

2H 2.87 2.811 2.098 

2CO 0.009378 0.011 14.7 

CO 0.007020 0.008 12.25 

Purity 2H 98.44 98.7 0.26 

Conversion 4CH 97 97 0 

Calciner product gas 

2CO 0.95452 0.95 4.747 

 

 

Fig. 1: schematic of process flowsheet in Aspen Plus 

 

Where,αiis the activity term. In order to minimize Gibbs 

free energy, one should find ni values in Eq. (3) that 

minimizes the Gibbs free energy restricted to the following 

term: 

∑ 𝐚𝐢𝐣𝐧𝐢 = 𝐀𝐣
𝐍
𝐢=𝟏   

(4) 

Where ija is the number of "j" species in a mole of "i" 

species, jA is the total number of atoms of jth species  

in the reaction environment. Lagrange multiplier method 

can minimize the Gibbs free energy as following [9]: 

∂L

∂ni

=ΔGf,i
0

+RT ln αi +∑ λiaij=0

k

i=1

 (5) 

Where, λiand L are the Lagrange multiplier and the 

Lagrange function, respectively. The result of the 

simulated model was validated with the experimental 

results. The operating conditions for the validation are 

as follows. The molar flow ratio of methane to steam 

is 1:2.2 mol and the temperature of the steam is 312℃  

and the temperature of fuel rector is 580℃. The 

temperature and pressure of the calcination reactor are 

880℃ and 1 bar, respectively. Table 2 shows validated 

results. 

The average deviation of simulation results from 

reference results is 5.3 % which is negligible and shows 

that simulation has been accomplished appropriately. 

 In order to make a reliable dataset for machine 

learning methods, 31252 different scenarios have been 

executed on the simulated Aspen Plus model. Table 3 

shows the operational parameters and their ranges. 

The selected range for the operational parameters were 

chosen according to the literature. The operational 

parameters are Temperature [℃], pressure [bar], steam 

flowrate [kmol/h], methane flowrate [kmol/h], CaO 

flowrate[kmol/h], and NiO flowrate [kmol/h], and outputs 

are CH4 conversion (%), H2 Purity (%) and CO2 removal (%). 

The model has been operated under different operational 

parameters, and these parameters have changed continuously 

to make different scenarios. 
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Table 3: Operational parameters and outputs range 

Parameter Type Range First point Mid-point End point 

Temperature [℃] Input 500-675 500 587.5 675 

Pressure [bar] Input 1-5 1 3 5 

Steam flowrate [kmol/hr] Input 0.0035-0.005 0.0035 0.00425 0.005 

Methane flowrate [kmol/hr] Input 0.001-0.0015 0.001 0.00125 0.0015 

CaO flowrate [kmol/hr] Input 0.001-0.0013 0.001 0.00115 0.0013 

NiO flowrate [kmol/hr] Input 0.001-0.0014 0.001 0.0012 0.0014 

CO2 removal (%) output 0.7638- 0.9998 0.7638 0.8818 0.9998 

H2 Purity (%) output 0.8402- 0.9991 0.8402 0.91965 0.9991 

CH4 Conversion (%) output 0.6690-0.9993 0.6690 0.83415 0.9993 

To determine the accuracy of developed ML methods to 

predict the CH4 conversion, CO2 Purity and H2 purity of 

a SECLR unit statistical measures, namely coefficient 

of determination (R2), Mean Squared Error (MSE), and 

Root Mean Squared Error (RMSE) were calculated  

as follows: 

R
2
=1-

∑ [x
i

pre
-n

i=1 x
i

exp2

∑ [x
i

pre
-n

i=1 xi
m]

2      ,        xm=
∑ x

i

expn∑

i=1

n
 (6) 

MSE=
1

n
∑ [x

i

exp
i

pre2

n∑

i=1
  (7) 

𝐑MSE=√
1

n
∑ [x

i

exp
i

pre2
n∑

i=1

 (8) 

Where x
i

exp, xi
pre

 are experimental and predicted values, 

respectively, and n indicates the number of data points. 

 

Intelligent models 

In this paper, three machine learning methods, namely 

ANN, Ensemble learning, and SVM, were employed to 

predict CH4 conversion, H2 Purity and CO2 removal of a 

SECLR unit. 31252 different scenarios were considered as 

31252 datapoints and were normalized between 0 and 1 

before the implantation of the machine learning methods. 

Moreover, 70 % of the data points were selected randomly 

as a training set to build the intelligent models, and 30 % 

were selected as the test set to test the precision of  

the developed models. 

 

Artificial neural network 

Artificial neural networks imitated from the principles 

of biological neural network function establishes a 

regression amongst independent variables and dependent 

variables and extracts delicate information and complex 

knowledge from the representative data set. ANN structure 

consists of an input layer, one or more hidden layers, and 

one output layer [32]. Fig 2a depicts a schematic of an 

ANN. In the developed model, the Levenberg-Marquardt 

algorithm, an approximation of Newton's method, was used 

as the training algorithm. A hidden layer comprising  

30 neurons was applied, and hyperbolic tangent sigmoid 

and linear function (purelin) was used as the transfer 

functions between the layers.  

 

Support vector machine 

A SVM is a supervised learning method famous for 

employing it in classification and regression issues. SVM 

creates a set of hyperplanes to classify and regress all 

inputs in a high-dimensional space. The closest patterns to 

the classification and regression margin are called support 

vectors. The objective of an SVM is to maximize  

the margin between the hyperplane and the support 

vectors. For nonlinear problems, SVM creates a set of 

patterns and a feature space in which the initial nonlinear 

boundaries are linearly separable by mapping the features’ 

space. This mapping is done by a set of mathematical core 

functions called kernels. SVM algorithm is also utilized 

for multivariate regression problems. As for classification, 

when the SVM is applied for regression, the algorithm 

contains the main features that characterize the maximum 

margin algorithm[33]. For the regression, the SVM looks 

for a feasible solution by individualizing the hyperplane 

that maximizes the margin. However, since the final predicted 

value is an actual number, the tolerance of the error is more 

flexible. The SVM can be performed linear or nonlinearly, 

depending on the applied kernel function. 
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(a) 

 

(b) 

 

(c) 

Fig. 2: Structures of the machine learning methods: (a): 

ANN, (b): SVM, and (c): Ensemble learning 

 

With the help of the defined kernel function for a nonlinear 

decision boundary, greater flexibility is achieved for  

the algorithm [34]. This study developed SVM models 

with linear kernels for the defined regression problem.  

Fig. 2b shows the structure of the SVM. 

 

Ensemble learning 

Ensemble learning is a form of hybrid learning system  

in which multiple learning models are combined intelligently 

in order to obtain more accurate and more robust results than 

a single model. In this study, to perform ensemble learning,  

a bootstrap aggregating (bagging) method was developed. 

During this process, random sets of samples were 

drawn 30 times with replacement, and regression trees were 

created from these subsets. Replacement is crucial as it 

ensures that each possible decision tree branching has  

an equal probability of being represented in the ensemble[32]. 

This is performed to provide optimal coverage of the domain 

space. Each newly generated learning set is used as an input 

to the learning model. Therefore, a series of different 

hypotheses employed for predicting the value of a dependent 

variable by combining all generated hypotheses has been obtained. 

This process was repeated 30 times, after which the models 

from the samples were combined by averaging the output  

for regression. Bagging excels when unstable-based 

algorithms with high variances, such as regression trees,  

are used. Bagging is robust since increasing the number of 

generated hypotheses does not lead to overfitting the overall 

algorithm. The minimum leaf size and the number of learning 

cycles were set at 8 and 30, respectively. The method of 

bagging was Bootstrap aggregating. Fig. 2 c demonstrates  

the architecture of the ensemble learning method. 

 

RESULTS AND DISCUSSION 

In order to predict CH4 conversion, CO2 removal, and 

H2 purity of a SECLR unit, three different machine 

learning methods were utilized, namely Artificial Neural 

Network (ANN), ensemble learning, and SVM. 

Fig. 3a depicts the comparison between ANN predicted 

and experimental CH4 conversion. Also, Fig. 3b shows  

the ensemble learning prediction vs. experimental CH4 

conversion. In addition, Fig. 3c indicates the analogy 

between the prediction of SVM for CH4 conversion and the 

experimental values. 

As observed, ANN provides a better convergence 

between predicted and experimental CH4 conversion. 

Fig. 3d shows the distribution of error of ANN prediction  

for CH4 conversion. The interval of error for ANN falls 

between [-0.1363, 0.0947] and [-0.1319, 0.0872] for  

the train set and test set, respectively. Fig. 3e depicts  

the ensemble learning error distribution for the prediction  

of CH4 conversion. As seen, the error interval for ensemble 

learning falls between [-0.1608, 0.0778], and [-0.1529, 

0.0796] for train set and test set, respectively. Fig. 3f depicts 

the attributed error distribution to SVM for the prediction of 

CH4 conversion. As can be seen, the interval of error for 

SVM falls between [-0.1967, 0.0972], and [-0.1931, 0.0967] 

for the train set and test set, respectively. By comparing the 

intervals of the machine learning methods, it can be found 

that ANN has the narrowest error distribution due to the high 

accuracy of ANN in predicting the CH4 conversion. 

Moreover, according to table 3 for CH4 conversion 

prediction, ANN provided the least MSE, RMSE, and 

highest R2 compared to ensemble learning and SVM. 

Fig. 4a shows the comparison between ANN predicted 

and experimental CO2 removal. Also, fig. 4b indicates the 

ensemble learning prediction vs. experimental CO2 

removal. Moreover, fig. 4c depicts the analogy between 

the prediction of SVM for CO2 removal and the 

experimental values. As it can be seen, ANN provides  

a better convergence between predicted and experimental   
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 3: The machine learning resulted obtained for predicting CH4 conversion: (a) comparison between experimental and ANN predicted 

values, (b) comparison between experimental and ensemble predicted values, (c) comparison between experimental and SVM predicted 

values, (d) error distribution of ANN predicted values, (e) error distribution of ensemble predicted values, and (f) error distribution of SVM 

predicted values. 
 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Fig. 4. The machine learning resulted obtained for predicting H2 purity: (a) comparison between experimental and ANN predicted values, 

(b) comparison between experimental and ensemble predicted values, (c) comparison between experimental and SVM predicted values, 

(d) error distribution of ANN predicted values, (e) error distribution of ensemble predicted values, and (f) error distribution of SVM 

predicted values. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Fig. 5. The machine learning resulted obtained for predicting H2 purity: (a) comparison between experimental and ANN predicted values, 

(b) comparison between experimental and ensemble predicted values, (c) comparison between experimental and SVM predicted values, (d) 

error distribution of ANN predicted values, (e) error distribution of ensemble predicted values, and (f) error distribution of SVM predicted 

values. 

 

CO2 removal. Fig. 4d exhibits the distribution of error  

of ANN prediction for CO2 removal. The interval of error 

for ANN falls between [-0.0120, 0.0121], and [-0.0087, 0.0119] 

for the train set and test set, respectively. Fig. 4e displays 

the ensemble learning error distribution for the prediction 

of CO2 removal. As observed, the error interval for 

ensemble learning falls between [-0.0471, 0.0254] and  

[-0.0489, 0.0249] for the train set and test set, respectively. 

Fig. 4f shows the related error distribution to SVM for the 

prediction of CO2 removal. As seen, the error interval for 

SVM falls between [-0.1595, -0.0487], and [-0.1567, 

0.0473] for the train set and test set, respectively. 

Comparing the intervals of the machine learning methods 

shows that ANN has the narrowest error distribution  

due to its high accuracy in predicting CO2 removal. 

Furthermore, according to table 3 for CO2 removal 

prediction, ANN provided the least MSE, RMSE,  

and highest R2. In comparison with ensemble learning  

and SVM. 

Fig. 5a depicts the comparison between ANN predicted 

and experimental H2 purity. Also, Fig. 5b shows the 

ensemble learning prediction vs. experimental H2 purity. 

Furthermore, Fig. 5c depicts the analogy between the 

prediction of SVM for H2 purity and the experimental 

values. As it can be seen, ANN provides a better 

convergence between predicted and experimental H2 

purity. Fig. 5d displays the distribution of error of ANN 

prediction for H2 purity. The interval of error for ANN falls 

between [-0.006, 0.0046], and [-0.0045, 0.0044] for the 

train set and test set, respectively. Fig. 5e displays the 

ensemble learning error distribution for the prediction of 

H2 purity. As observed, the error interval for ensemble 

learning falls between [-0.0197, 0.0163] and [-0.0203, 

0.0145] for the train set and test set, respectively. Fig. 5f 

shows the related error distribution to SVM for the 

prediction of CO2 removal. As can be seen, the interval of 

error for SVM falls between [-0.1149, -0.0267] and  

[-0.1121, 0.0259] for the train set and test set, respectively. 

Comparing the intervals of the machine learning methods 

shows that ANN has the narrowest error distribution due 

to the high accuracy of ANN in predicting the H2 purity. 

Furthermore, according to table 4 for H2 purity prediction, 

ANN provided the least MSE, RMSE, and highest R2 

compared to ensemble learning and SVM. 
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Table 4: Statistical analysis on the performance of developed models 

Output Model 
MSE RMSE R2 

Train Test Train Test Train Test 

 

CH4 conversion (%) 

ANN 5.16e-5 5.4e-5 0.0072 0.0073 0.9896 0.9889 

Ensemble 1.33e-4 1.5e-4 0.0115 0.0123 0.9775 0.9734 

SVM 0.0014 0.0013 0.0317 0.0364 0.7312 0.7342 

 

CO2 removal (%) 

ANN 2.32e-6 2.41e-6 0.0015 0.0016 0.9989 0.9989 

Ensemble 5.024e-5 6.04e-5 0.0071 0.0081 0.9852 0.9821 

SVM 6.55e-4 6.87e-4 0.0256 0.0262 0.7206 0.7240 

 

H2 Purity (%) 

ANN 4.32e-7 4.36e-7 6.57e-4 6.61e-4 0.9996 0.9996 

Ensemble 9.82e-6 1.63e-5 0.0031 0.0034 0.9941 0.9928 

SVM 2.91e-4 2.82e-4 0.0171 0.0170 0.7735 0.7742 

CONCLUSIONS 

In this paper, an AI-based modeling of a SECLR unit 

was accomplished. To this end, first a SECLR unit  

was simulated via ASPEN Plus and then validated by 

experimental data. Afterward, ASPEN validated 

simulation was conducted under 31000 different scenarios 

in terms of different operational conditions. The data 

obtained from ASPEN plus was used to develop prediction 

models with machine learning methods. Artificial neural 

network, ensemble learning, and SVM methods were 

developed to predict the CH4 conversion, CO2 removal, 

and H2 Purity of a SECLR unit. The performance  

and accuracy of machine learning developed R2, MSE, 

and RMSE measured models. ANN presented the best 

performance to predict CH4 conversion, CO2 removal,  

and H2 Purity among all three machine learning methods. 

For CH4 conversion, the R2 of ANN is 0.9896 and 0.9889 

for the train set and test set, respectively. Also, in the 

prediction of CH4 conversion, ANN provides MSE of 

5.16e-5 and 5.4e-5 for the train set and test set, 

respectively. Moreover, the estimation of CH4 conversion 

via ANN led to an RMSE of 0.0072 and 0.0073 for the 

train set and test set, respectively. For CO2 removal, the R2 

of ANN is 0.9852 and 0.9821 for the train set and test set, 

respectively. Also, in the prediction of CO2 removal, ANN 

provides MSE of 5.024e-5 and 6.04e-5 for the train set and 

test set, respectively. Moreover, the estimation of CO2 

removal via ANN led to an RMSE of 0.0071 and 0.0081 

for the train and test sets, respectively. For H2 Purity, R2 

of ANN is 0.9996 and 0.9998 for the train set and test set, 

respectively. Also, in the prediction of H2 Purity, ANN 

provides MSE of 4.32e-7 and 4.36e-7 for the train set and 

test set, respectively. Moreover, the estimation of H2 Purity 

via ANN led to RMSE of 0.0031 and 0.0034 for the train 

and test sets, respectively. Finally, in the AI-based 

modeling of this paper time is not considered.  

A suggestion to extend this work is to investigate the time-

series prediction of the SECLR unit using recurrent neural 

networks.  
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