Poly (Acrylic Acid-Co-Styrene)/ HDTMA-MMT Composite for Efficient Adsorption of Phenol Wastewater: Isotherm and Kinetic Modeling

Document Type : Research Article


1 Center for Scientific and Technical Research in Physico-Chemical Analyzes (CRAPC). Industrial Zone No. 30. Bou-Ismail, Tipaza , ALGERIA

2 Laboratory of Organic Chemistry, Physical and Macromolecular (LCOPM). University of Sid Bel-Abbès, Department of Chemistry, Sid Bel-Abbès, ALGERIA

3 Center for Scientific and Technical Research in Physico-Chemical Analyzes (CRAPC). Industrial Zone No. 30. Bou-Ismail, Tipaza, ALGERIA

4 Laboratory of Macromolecular and Thio-organic Macromolecular Synthesis, Faculty of Chemistry, University of Sciences and Technology Houari Boumediene, USTHB, Algiers, ALGERIA


A composite, based on poly (acrylic acidcostyrene) and organomodified montmorillonite with hexadecyltrimethyl ammonium bromide (27 wt. % in inorganics), designated as poly(AA-co-St)/HDTMA-MMT was prepared by in situ radical polymerization. The structural and morphological properties were examined by Fourier Transform InfraRed (FT-IR) spectroscopy, X-Ray Diffraction (XRD), and scanning electron microscopy (SEM). The results show the intercalation of poly (acrylic acidcostyrene) in the organomodified montmorillonite layers. The percent of the inorganics in the composite is 27 % as evaluated by ThermoGravimetric Analysis (TGA). The performance of the composite to remove phenol molecules from an aqueous solution was investigated by batch adsorption, under different experimental conditions. The zeta potential of poly(AA-co-St)/HDTMA-MMT composite was calculated to understand the mechanism of phenol adsorption onto poly(AA-co-St)/HDTMA-MMT.

The pollutant uptake behavior was determined by UV-Vis spectrophotometry. The best results were obtained for a contact time of 180 minutes, an initial concentration of 30 mg/L, pH 6. The presence of acrylic acid and styrene can modify the surface characteristics of the composite and affect the adsorption capacity as confirmed by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). Interestingly, the maximum adsorption capacity was found to be 150.7 mg/g. Equilibrium modeling
of the phenol removal process was carried out using the Langmuir and Freundlich adsorption isotherms. The equilibrium adsorption data were found to be well-fitted with the Freundlich adsorption isotherm. The kinetic of adsorption was best described by a pseudo-second-order expression rather than a first-order model. The interactions between phenol molecules and adsorbent were explained by electrostatic as well as hydrogen bonding interactions, as confirmed by the pseudo-second-order kinetic model. A model for the interactions between a composite and phenol molecule was proposed. Interestingly, the desorption of phenol from the adsorbent using hot water remains stable. The value of the first adsorption/desorption cycle was about 98.1 % and achieved 92.8 % after five cycles.


Main Subjects

[1] Luz-Asunción M., Castaño V.M., Sánchez-Mendieta V., Velasco-Santos C., Martínez-Hernández A. L. Adsorption of Phenol from Aqueous Solutions by Carbon Nanomaterials of One and Two Dimensions: Kinetic and Equilibrium Studies, J. Nanomater., 14: 1-14. (2015).
[3] Huang Y., Ma X. Y., Liang G. Z., Yan H. X., Adsorption of Phenol with Modified Rectorite from Aqueous Solution, Chem. Eng. J., 141(3): 1–8 (2008).
[4] Villegas L.G.C., Mashhadi N., Chen M.,  A Short Review of Techniques for Phenol Removal from Wastewater, Curr. Pollution Rep., 2: 157–167 (2016).
[5] Kazemi P., Peydayesh M., Bandegi A., Mohammadi T., Bakhtiari O., Stability and Extraction Study of Phenolic Wastewater Treatment by Supported Liquid Membrane Using Tributyl Phosphate and Sesame Oil as Liquid Membrane, Chem Eng Res Des., 92(2): 375–83 (2014).
[6] Sarkar M., Acharya PK., Use of Fly Ash for the Removal of Phenol and its Analogues from Contaminated Water, J. Waste Manag., 26(6): 559-570 (2006).
[7] Noi N., Cam N., Thanh D., Hung T., Dinh B., Dae H., Synthesis of Organoclays and their Application for the Adsorption of Phenolic Compounds from Aqueous Solution, J Ind Eng Chem., 19(2): 640-644 (2013)
[8] Slimani M.S., Ahlafi H., Moussout H., Boukhlifi F., and Zegaoui O., Adsorption of Hexavalent Chromium and phenol onto Bentonite Modified With HexaDecylTriMethylAmmonium Bromide (HDTMABr), JAC, 8(2): 1602–1611 (2014).
[9] Vazquez G., Gonzalez-Alvarez J., Garcia A., Freire M. S., and Antorrena G., Adsorption of Phenol on Formaldehyde-Pretreated Pinus Pinaster Bark: Equilibrium and Kinetics, Bioresour. Technol., 98(8): 1535–40 (2007).
[10] Polat H., Molva M., Polat M., Capacity and Mechanism of Phenol Adsorption on Lignite, Int. J. Miner. Process., 79(4): 264–73 (2006).
[11] Ceylan Z., Mustafaoglu D., Malkoc E., Adsorption of Phenol by MMT-CTAB and WPT-CTAB: Equilibrium, Kinetic and Thermodynamic Study, Part. Sci. Technol., 36(6): 716-726 (2018).
[12] Khodabakhsh S., Alaiee E., Taghavi L., Samiee L., Comparing Nanocomposites of TiO2/SBA-15 and TiO2/GO for Removal of Phenol out of Aqueous Solutions, Iran. J. Chem. Chem. Eng. (IJCCE), 39(5): 121-130 (2020).
[13] Wang Y.Q., Gu B., Xu W.L., Electro-Catalytic Degradation of Phenol on Several Metal-Oxide Anodes, J. Hazard. Mater.,162(3): 1159–64 (2009).
[14] Li M., Feng C., Hu W., Zhang Z., Sugiura N., Electrochemical DEgradation of Phenol Using Electrodes of Ti/RuO2–Pt and Ti/IrO2–Pt, J. Hazard. Mater., 162(1): 455–62 (2009).
[15] Yang C., Qian Y., Zhang L., Feng J., Solvent Extraction Process Development and Onsite Trial-Plant for Phenol Removal from Industrial Coal-Gasification Wastewater, Chem. Eng. J., 117(2): 179–85 (2006).
[16] Víctor-Ortega M.D., Ochando-Pulido J.M., Martínez-Ferez A., Performance and Modeling of Continuous Ion Exchange Processes for Phenols Recovery from Olive Mill Wastewater, Process Saf. Environ. Prot., 100: 242–51 (2016).
[17] Abdel-Ghani N.T., El-Chaghaby G.A., Helal F.S., Individual and Competitive Adsorption of Phenol and Nickel onto Multiwalled Carbon Nanotubes, J. Adv. Res., 6(3): 405–15 (2015).
[18] Matthews T., Majoni S., Nyoni B., Naidoo B., Chiririwa H., Adsorption of Lead and Copper by a Carbon Black and Sodium Bentonite Composite Material: Study on Adsorption Isotherms and Kinetics, Iran. J. Chem. Chem. Eng. (IJCCE), 38(1): 101-109 (2019).
[19] Anisuzzaman S. M.,  Bono A., Krishnaiah D., Tan Y. Z., A Study on Dynamic Simulation of Phenol Adsorption in Activated Carbon Packed Bed Column, J. King Saud Univ. Eng. Sci., 28(1): 47–55 (2016).
[20] El-Sigeny S., Mohamed S.K., Abou Taleb M.F., Radiation Synthesis and Characterization of Styrene/Acrylic Acid/Organophilic Montmorillonite Hybrid Nanocomposite for Sorption of Dyes from, Polym. Compos., 35(12): 2353-2364 (2014).
[22] Cao Ch.Y.,  Meng L.K., Zhao Y.H.,  Adsorption of Phenol from Wastewater by Organo-Bentonite, Desalin. Water Treat., 52(21): 3504-3509 (2014). 
[24] Asnaoui H., Dehmani Y., Khalis M., Hachem E.K., Adsorption of Phenol from Aqueous Solutions by Na–Bentonite: Kinetic, Equilibrium and Thermodynamic Studies, Int. J. Environ. Anal. Chem., 102(13): 3043-3057 (2020).
[25] Seyed A.H., Shervin D.A., Manouchehr V., Abdolreza S., Mohtada S., Green Electrospun Membranes Based on Chitosan/Amino-Functionalized Nanoclay Composite Fibers for Cationic Dye Removal: Synthesis and Kinetic Studies, ACS Omega6(16): 10816−10827 (2021).
[26] Hariani P., Riyanti F., Ratnasari H., Adsorption of Phenol Pollutants from Aqueous Solution Using Ca-Bentonite/Chitosan Composite, J. Mns. Lingk., 22(2): 233-23 (2015).
[27] Awad A.M., Shaikh Sh. M.R., Jalab R., Gulied M. H., Nasser M. S., Benamor A., Adham S., Adsorption of Organic Pollutants by Natural and Modified Clays: A Comprehensive Review, Sep. Purif. Technol., 228: 115719 (2019).
[28] Islam M.M., Biswas S., Hasan M.M., Haque P., Rimu S.H., Rahman M.M., Studies of Cr (VI) Adsorption on Novel Jute Cellulose-Kaolinite Clay Biocomposite, Desal. Water Treat., 123: 265–276 (2018).
[29] Bhattacharyya K.G., Gupta S.S., Adsorption of a Few Heavy Metals on Natural and Modified Kaolinite and Montmorillonite: A Review, Adv. Colloid Interface Sci., 140(2): 114 (2008). 
[30] Yu W.H., Li N., Tong D.S., Zhou C.H., Lin C.X.C., Xu C.Y., Adsorption of Proteins and Nucleic Acids on Clay Minerals and their Interactions: A Review, Appl. Clay Sci., 80: 443–452 (2013).
[31] Ngulube, T.; Gumbo, J.R.; Masindi, V.; Maity, A., An Update on Synthetic Dyes Adsorption onto Clay Based Minerals: A state-of-art Review, J. Environ. Manage., 191: 35 (2017).
[32] Hernández-Hernández K.A., Illescas J., Díaz-Nava M.C., Martínez-Gallegos S., Muro-Urista C., Ortega-Aguilar R., Rodríguez-Alba E., Rivera E., Preparation of Nanocomposites for the Removal of Phenolic Compounds from Aqueous Solutions, Appl. Clay Sci., 157: 212-217 (2018).
[33] Ben Bouabdallah A., Djelali N., Study of the Effect of Various Parameters on the Adsorption of Heavy Metals by Bentonite-Polypyrrole Composite, Iran. J. Chem. Chem. Eng., 342(3): 786-800 (2023).
[34] Hassan T., Salam A., Khan A., Khan S.U., Khanzada H., Wasim M., Khan M.Q., Kim I.S., Functional Nanocomposites and their Potential Applications: A Review, J. Polym. Res., 28: 36 (2021).
[35] Pavlidou S., Papaspyrides C.D., A Review on Polymer Layered Silicate Nanocomposites, Prog. Polym. Sci., 33(12): 1119–1198 (2008).
[37] Anadão P., Polymer/clay Nanocomposites: Concepts, Researches, Applications and Trends for the Future, In: Ebrahimi, F. (Ed.), Nanotechnology and Nanomaterials “Nanocomposites - New Trends and Developments” INTECH, 1–16 (2012).
[38] Bergaya, F.; Lagaly, G. General Introduction: Clays, Clay Minerals, and Clay Science, In: Bergaya, F., Lagaly, G. (Eds.), “Handbook of Clay Science. Developments of Clay Science”, Vol. 5. Elsevier, Amsterdam, Chp., 1: 1–19 (2013).
[39] Bergaya, F.; Detellier, C.; Lambert, J.-F.; Lagaly, G. Introduction to clay-polymer Nanocomposites (CPN), In: Bergaya, F., Lagaly, G. (Eds.), “Handbook of Clay Science. Developments of Clay Science”, Vol. 5. Elsevier, Amsterdam, Chp. 13: 655–677 (2013).
[40] Zarei S., Ghasem R. B., Sadeghi M., Montmorillonite Nanocomposite Hydrogel Based on Poly (acrylicacid-co-acrylamide): Polymer Carrier for Controlled Release Systems, Iran. J. Chem. Chem. Eng (IJCCE)., 38(5): 31-43 (2019).
[41] Okada A., Kawasumi M., Usuki A., Kojima Y., Kurauchi T., Kamigaito O., In Polymer Based Molecular Composites, Schaefer, D. W., Mark, J.E., (Eds.), MRS Symposium Proceedings, Materials Research Society: Pittsburgh, 171: 45–50 (1990).
[42] Lerari D., Peeterbroeck S., Benali S., Benaboura A., Dubois Ph., Combining Atom Transfer Radical Polymerization and Melt Compounding for Producing PMMA/Clay Nanocomposites, J. Appl. Polym. Sci., 121(2): 1355–1364 (2011).
[43] Sanchez C., Belleville Ph., Popalld M., Nicole L., Applications of Advanced Hybrid Organic–Inorganic Nanomaterials: From Laboratory to MarketChem. Soc. Rev., 40: 696-753 (2011).
[45] Bharadwaj R. K., Modeling the Barrier Properties of Polymer-Layered Silicate Nanocomposites, Macromolecules,  34(26): 1989–1992 (2001).
[46] Lerari D., Peeterbroeck S., Benali S., Benaboura A.,  Dubois Ph., Use of a New Natural Clay to Produce Poly (methylmethacrylate) -Based Nanocomposites, Polym. Int., 59(1): 71–77 (2010).
[47] Rahman M., Rimu S. H., Biswas S., Rashid T.U., Chisty A.H., Preparation of Poly (Acrylic Acid) Exfoliated Clay Composite by in-situ Polymerisation for Decolouration of Methylene Blue from Wastewater, Int. J. Environ. Anal. Chem., 19: 32-37 (2020).
[49] Gupta V.K., Agarwal S., Singh P., Pathania D., Acrylic Acid Grafted Cellulosic Luffa Cylindrical Fiber for the Removal of Dye and Metal Ions, Carbohydr. Polym., 98(1): 1214-1221 (2013).
[52] Huang G., Liang H., Wang X., Gao J., Poly (Acrylic Acid)/Clay Thin Films Assembled by Layer-by-Layer Deposition for Improving the Flame Retardancy Properties of Cotton, Ind. Eng. Chem. Res., 51(38): 12299–12309 (2012).
[55] Moon H., Kook S.K., Park H.C., Adsorption of Phenols onto a Polymeric Sorbent, Korean J. Chem. Eng., 8: 168-176 (1991).
[56] Biswas S., Rashid T., Debnath T., Haque P., Rahman M., Application of Chitosan-Clay Biocomposite Beads for Removal of Heavy Metal and Dye from Industrial Effluent, J. Compos. Sci., 16(4): 1-14 (2020).
[57] Bhatia M., Rajulapati S. B., Sonawane S., Girdhar A., Synthesis and Implication of Novel Poly (Acrylic Acid)/Nanosorbent Embedded Hydrogel Composite for Lead Ion Removal, Scientific Reports, 7: 16413 (2017).
[58] Djamaa Z., Lerari D., Mesli A., Bachari K., Poly(acrylc acid-co-styrene)/Clay in a Nocomposites: Efficient Adsorbent for Methylene Blue Dye Pollutant, Int. J. Plast. Technol., 23: 110–121 (2019).
[59] Belalem K., Benaboura A., Lerari D., Kanoun N.,
Chebout R., Effect of Cationic and Anionic Clays as Supports for Styrene Polymerization Initiated by Metallocenes/MAO Catalytic System, Polym. Bull., 77: 4289-4305 (2020).
[60] Ferhat D., Nibou D., Mekatel E., Amokrane S., Adsorption of Ni2+ Ions onto NaX and NaY Zeolites: Equilibrium, Kinetics, Intra Crystalline Diffusion and Thermodynamic Studies, Iran. J. Chem. Chem. Eng. (IJCCE), 38(6): 63-81 (2019).
[61] Abdelwahab O., Amin N.K., Adsorption of Phenol from Aqueous Solutions by Luffa Cylindrica Fibers: Kinetics, Isotherm and Thermodynamic Studies, Egypt. J. Aquat. Res., 39(4): 215–223 (2013).
[63] Ltifi I., Ayari F., Chehimi B. D., Ayadi M. T. Physicochemical Characteristics of Organophilic Clays Prepared Using two Organo‑Modifiers: Alkylammonium Cation Arrangement Models, Appl. Water Sci., 8(91): 1-8 (2018).
[64] Banat F.A., Al-Bashir B., Al-Asheh S., Hayajneh O., Adsorption of Phenol by Bentonite, Environ. Pollut., 107: 391-398 (2000).
[66] Giles C.H., Smith D., A General Treatment and Classification of the Solute Adsorption Isotherm I. Theoretical, J. Colloid Interface Sci., 47(3): 755-765 (1974).
[67] Greluk M., Hubicki Z., Isotherm and Thermodynamic Studies of Reactive Black 5 Removal by Acid Acrylic Resins, Chem. Eng. J., 162(3): 919-926 (2010).
[69] Calace N., Nardi E.B., Petronio M., Pietroletti M., Adsorption of Phenols by Papermill Sludges, Environ. Pollut., 118(3): 315–319 (2002).
[70] Li Y., Du Q., Liu T., Equilibrium, Kinetic and Thermodynamic Studies on the Adsorption of Phenol onto Graphene, Mater. Res. Bull., 47(8): 1898–1904 (2012).
[71] Djamaà Z., Benabadji K. I., Choukchou-Braham E., Mansri A., Removal of Hexavalent Chromium from Aqueous Solutions Using N-octyl Quaternized Poly(4-vinylpyridine): Kinetic and Equilibrium Studies, J. Macromol. Sci. - Pure Appl. Chem., 50(7): 679-684 (2013).
[74] Esmaeili H., Foroutan R., Adsorptive Behavior of Methylene Blue onto Sawdust of Sour Lemon, Date Palm, and Eucalyptus as Agricultural Wastes, J. Disper. Sci. Technol., 40(7): 990-999 (2018)
[75] Abshirini Y., Foroutan R., Esmaeili H., Cr(VI) Removal from Aqueous Solution Using Activated Carbon Prepared from Ziziphus Spina-Christi Leaf, Mater. Res. Express., 6(4): 1-37 (2019).
[76] Lagergren S.K., About the Theory of So-called Adsorption of Soluble Substances Sven, Vetenskapsakad. Handingarl, 24: 1 (1898).
[77] Ho Y.S., McKay G., Pseudo-Second Order Model for Sorption Processes, Process Biochem., 34(5): 451-465 (1999).
[78] Karadaǧ E., ÖB Ü., Saraydin D., Swelling Equilibria and Dye Adsorption Studies of Chemically Crosslinked Superabsorbent Acrylamide/Maleic Acid Hydrogels, Eur. Polym. J., 38(11): 2133-2141 (2002).
[79] Abdel-Ghani N.T., El-Chaghaby G.A., Helal F.S., Individual and Competitive Adsorption of Phenol and Nickel onto Multiwalled Carbon Nanotubes, J. Adv. Res., 6(3): 405-415 (2014).