A Sensitive Electrochemical Sensor Using a Dolomite-Graphite Composite for the Simultaneous Detection of Pb2+ and Cd2+

Document Type : Research Article

Authors

1 Laboratory of Physical Chemistry, Materials and Catalysis (LCPMC), Geomaterials and Materials for Energy Team, Faculty of Sciences Ben M’Sick, Hassan II University of Casablanca, MOROCCO

2 Team of Molecular Electrochemistry and Inorganic Materials, Faculty of Sciences and Technology, Sultan Moulay Slimane University of Beni Mellal, MOROCCO

3 Laboratory of Applied Geosciences, Faculty of Sciences, University of Mohammed 1, Oujda, MOROCCO

4 MAScIR Foundation, VARENA Center, Rabat Design, Rue Mohamed El Jazouli, Madinat Al Irfane, Rabat 10100, MOROCCO

5 Department of Earth Sciences, Scientific Institute, University Mohammed V, Rabat, MOROCCO

Abstract

A sensitive electrochemical method for the detection of trace heavy metal ions such as lead Pb (II) and cadmium Cd (II) using a Carbon Graphite Electrode (CPE) chemically modified by a dolomite powder was applied. Firstly, local Moroccan dolomite was deeply characterized  in order to understand its chemical composition and morphological structure. The performance of this sensor is revealed by three electrochemical methods: Square Wave Voltammetry (SWV), Cyclic Voltammetry (CV), and Electrochemical Impedance Spectroscopy (EIS). The effect of preconcentration time, concentration effect, media pH, and interference ionic response to the electrochemical response of the working electrode were all investigated under various experimental settings. The SWV determination coefficient (R² (Pb (II)) = 0.8385 and R² (Cd (II)) = 0.9307) is lower than the cyclic voltammetry result (R² (Pb (II)) = 0.989 and R² (Cd (II)) = 0.977), showing the latter's superior predicting ability. Even in the presence of interfering ions, the suggested electrochemical sensor exhibits good repeatability and selectivity, with detection limits of 0.10113 μM and 0.22227 μM for Pb2+ and Cd2+, respectively. These values ​​obtained from the calibration curves of the substances studied reveal that the developed sensor showed excellent electroanalytical performances for the detection of heavy metal ions. According to Atomic Absorption Spectroscopy (AAS), the prepared electrode from CPE-dolomite showed a highly sensitive capacity toward cadmium detection with a content of 178.43 mM after mineralization of the electrode immersed in CdSO4 solution. The same electrode was used to reduce the lead in which the resulting solution was analyzed involving a value of 125.23 mM.

Keywords

Main Subjects


[1] Hayat M.T., Nauman M., Nazir N., Ali S., Bangash N., “Environmental Hazards of Cadmium: Past, Present, and Future”, in: Cadmium Toxic. Toler. Plants, Elsevier, 163–183 (2019).
[2] Rice K.M., Walker E.M., Wu M., Gillette C., Blough E.R., Environmental Mercury and Its Toxic Effects, J. Prev. Med. Pub. Health, 47(2): 74–83 (2014).
[4] Loh N., Loh H.-P., Wang L.K., Wang M.-H.S., “Health Effects and Control of Toxic Lead in the Environment”, In: L.K. Wang, M.-H.S. Wang, Y.-T. Hung, N.K. Shammas, Nat. Resour. Control Process., Springer International Publishing, Cham, 233-284 (2016).
[5] Singh R., Gautam N., Mishra A., Gupta R., Heavy Metals and Living Systems: An Overview, Indian J. Pharmacol, 43(3): 246 (2011).
[6] Mitra S., Chakraborty A.J., Tareq A.M., Emran T.B., Nainu F., Khusro A., Idris A.M., Khandaker M.U., Osman H., Alhumaydhi F.A., Simal-Gandara J., Impact of Heavy Metals on the Environment and Human Health: Novel Therapeutic Insights to Counter the Toxicity, J. King Saud Univ. – Sci, 34(3): 101865 (2022).
[7] Gworek B., Dmuchowski W., Baczewska-Dąbrowska A.H., Mercury In The Terrestrial Environment: A Review, Environ. Sci. Eur, 32(1): 128 (2020).
[8] Esteban-Vasallo M.D., Aragonés N., Pollan M., López-Abente G., Perez-Gomez B., Mercury, Cadmium, and Lead Levels in Human Placenta: A Systematic Review, Environ. Health Perspect, 120(10): 1369–1377 (2012).
[9] Sun H., Brocato J., Costa M., Oral Chromium Exposure and Toxicity, Curr. Environ. Health Rep, 2(3): 295–303 (2015).
[15] Aragay G., Merkoçi A., Nanomaterials Application in Electrochemical Detection of Heavy Metals, Electrochimica Acta, 84: 49–61 (2012).
[16] Zhao Q., Gan Z., Zhuang Q., Electrochemical Sensors Based on Carbon Nanotubes, Electroanalysis, 14(23): 1609–1613 (2002).
[17] Privett B.J., Shin J.H., Schoenfisch M.H., Electrochemical Sensors, Anal. Chem, 80(12): 4499–4517 (2008).
[18] Lin W., Zhou F., Luo W., Song T., Li H., Alkali-Activated Dolomite and its Outstanding Mechanical Strength, Mater. Lett, 270: 127682 (2020).
[19] Hanane B., Jihad R., Naima B., Soukaina T., Nadia B., Naima B.T., Characterisation and Valorisation of the Moroccan Diatomite, J. Geosci. Environ. Prot. (JGEP), 10(02): 109–134 (2022).
[20] Manni A., Matadi Boumbimba R., Mikdam A., El Bouari A., Addiego F., Meziani J., Wary M., Magnesite and Dolomite Micro-Particles: Preparation, Physical Properties and Application in Bio-Based Polymer Composite, Polym. Bull, 79(4): 2149–2171 (2022).
[21] Stozhko N.Yu., Khamzina E.I., Bukharinova M.A., Tarasov A.V., An Electrochemical Sensor Based on Carbon Paper Modified with Graphite Powder for Sensitive Determination of Sunset Yellow and Tartrazine in Drinks, Sensors, 22(11): 4092 (2022).
[22] Li Q., Sun S., Smith A.D., Lundgren P., Fu Y., Su P., Xu T., Ye L., Sun L., Liu J., Enoksson P., Compact and Low Loss Electrochemical Capacitors Using a Graphite / Carbon Nanotube Hybrid Material for Miniaturized Systems, J. Power Sources, 412: 374–383 (2019).
[23] Wang H., Yoshio M., Graphite, a Suitable Positive Electrode Material for High-Energy Electrochemical Capacitors, Electrochem. Commun, 8(9): 1481–1486 (2006).
[24] Monteiro M.K.S., Paiva S.S.M., da Silva D.R., Vilar V.J.P., Martínez-Huitle C.A., dos Santos E.V., Novel Cork-Graphite Electrochemical Sensor for Voltammetric Determination of Caffeine, J. Electroanal. Chem, 839: 283–289 (2019).
[25] Purushothama H.T., Nayaka Y.A., Vinay M.M., Manjunatha P., Yathisha R.O., Basavarajappa K.V., Pencil Graphite Electrode as an Electrochemical Sensor for the Voltammetric Determination of Chlorpromazine, J. Sci. Adv. Mater. Devices, 3(2): 161–166 (2018).
[26] Song Y., Liu T.-Y., Xu G.-L., Feng D.-Y., Yao B., Kou T.-Y., Liu X.-X., Li Y., Tri-Layered Graphite Foil for Electrochemical Capacitors, J. Mater. Chem. A, 4(20): 7683–7688 (2016).
[27] Emir G., Dilgin Y., Ramanaviciene A., Ramanavicius A., Amperometric Nonenzymatic Glucose Biosensor Based on Graphite Rod Electrode Modified by Ni-Nanoparticle/Polypyrrole Composite, Microchem. J, 161:105751 (2021).
[28] Salavagione H.J., Díez-Pascual A.M., Lázaro E., Vera S., Gómez-Fatou M.A., Chemical Sensors Based on Polymer Composites with carbon Nanotubes and Graphene: The Role of the Polymer, J. Mater. Chem. A, 2(35): 14289–14328 (2014).
[30] Azadbakht A., Abbasi A.R., Derikvand Z., Karimi Z., Fabrication of an Ultrasensitive Impedimetric Electrochemical Sensor Based on Graphene Nanosheet/Polyethyleneimine/Gold Nanoparticle Composite, J. Electroanal. Chem, 757: 277–287 (2015).
[31] Kokkinos C., Prodromidis M., Economou A., Petrou P., Kakabakos S., Quantum Dot-Based Electrochemical DNA Biosensor Using a Screen-Printed Graphite Surface with Embedded Bismuth Precursor, Electrochem. Commun, 60: 47–51 (2015).
[32] Lei H., Pitt W.G., McGrath L.K., Ho C.K., Resistivity Measurements of Carbon–Polymer Composites in Chemical Sensors: Impact of Carbon Concentration and Geometry, Sens. Actuators B Chem, 101(1-2):122–132 (2004).
[35] Chan R.K., Murthi K.S., Harrison D., Thermogravimetric analysis of Ontario limestones and dolomites I. Calcination, Surface Area, and Porosity, Can. J. Chem, 48(19): 2972–2978 (1970).
[36] Maallah R., Moutcine A., Laghlimi C., Smaini M.A., Chtaini A., Electrochemical Bio-Sensor for Degradation of Phenol in the Environment, Sens. Bio-Sens. Res, 24: 100279 (2019).
[37] Prabhu S.V., Baldwin R.P., Kryger L., Preconcentration and Determination of Lead(II) at Crown Ether and Cryptand Containing Chemically Modified Electrodes, Electroanalysis, 1(1): 13–21(1989).
[38] Ramos J.A., Bermejo E., Zapardiel A., Pérez J.A., Hernández L., Direct Determination of Lead by Bioaccumulation at a Moss-Modified Carbon Paste Electrode, Anal. Chim. Acta, 273(1-2): 219–227 (1993).
[39] Tuzhi P., Zhe T., Guoshun W., Baoen S., Differential Pulse Voltammetric Determination of lead(II) with Benzoin Oxime-Modified Carbon Paste Electrodes, Electroanalysis, 6(7): 597–603 (1994).
[40] Hu Z., Seliskar C.J., Heineman W.R., PAN-Incorporated Nafion-Modified Spectroscopic Graphite Electrodes for Voltammetric Stripping Determination of Lead, Anal. Chim. Acta, 369(1-2): 93–101 (1998).
[41] Pandey S.K., Sachan S., Singh S.K., Ultra-Trace Sensing of Cadmium and Lead by Square Wave Anodic Stripping Voltammetry Using Ionic Liquid Modified Graphene Oxide, Mater. Sci. Energy Technol, 2(3): 667–675 (2019).
[42] Korolkov I.V., Zhumanazar N., Gorin Y.G., Yeszhanov A.B., Zdorovets, M.V., Enhancement of Electrochemical Detection of Pb2+ by Sensor Based on Track-Etched Membranes Modified with Interpolyelectrolyte Complexes, J. Mater. Sci. Mater. Electron, 31(22): 20368–20377 (2020).
[43] Alshawi J.M.S., Mohammed M.Q., Alesary H.F., Ismail H.K., Barton S., Voltammetric Determination of Hg2+, Zn2+, and Pb2+ Ions Using a PEDOT/NTA-Modified Electrode, ACS Omega, 7(23): 20405–20419 (2022).
[44] Blaise N., Gomdje Valéry H., Maallah R., Oubaouz M., Tigana Djonse Justin B., Andrew Ofudje E., Chtaini A., Simultaneous Electrochemical Detection of Pb and Cd by Carbon Paste Electrodes Modified by Activated Clay, J. Anal. Methods Chem, 2022:1-9 (2022).
[45] Laghlimi C., Ziat Y., Moutcine A., Hammi M., Zarhri Z., Maallah R., Ifguis O., Chtaini A., Analysis of Pb(II), Cu(II) and Co(II) in Drinking Water by a New Carbon Paste Electrode Modified with an Organic Molecule, Chem. Data Collect, 29: 100496 (2020).
[46] Oularbi L., Turmine M., Salih F.E., El Rhazi M., Ionic Liquid/Carbon Nanofibers/Bismuth Particles Novel Hybrid Nanocomposite for Voltammetric Sensing of Heavy Metals, J. Environ. Chem. Eng, 8(3): 103774 (2020).
[50] Maslova M.V., Ivanenko V.I., Yanicheva N.Yu., Mudruk N.V., Comparison of The Sorption Kinetics of Lead(II) and Zinc(II) on Titanium Phosphate Ion-Exchanger, Int. J. Mol. Sci.(IJMS), 21(2): 447 (2020).