Creative Method of Electron Exchange Magnitude (EEM) for Determination of Band Edges in PbS QDs

Document Type : Research Article


Department of Chemistry, Payame Noor University, Tehran, I.R. IRAN


Determining the band edges of Quantum Dots (QDs) in electrolytes with different redox is still a serious challenge for many researchers. A new and innovative method to trace Valence Band (VB) and Conduction Band (CB) edges is Electron Exchange Magnitude (EEM) determination with logarithmic scaling in Cyclic Voltammetry (CV) curves. The EEM method is an adaptation of the Tafel method, which determines the equilibrium currents in the logarithmic scale in the potential current curves. Accordingly, the equilibrium currents on the surface of QDs can be related to the currents occurring at the band edges. Since the band gap varies with the size of the QDs, the shift of the band edges occurs as the size of the QDs changes. In this study, PbS QDs were deposited on ITO/ZnO by the SILAR method and considered as a photoanod. The band edges were investigated by EEM method in electrolytes with and without Sulfide polysulfide redox. In this way, the minimum value of EEM in the anodic and cathodic range was considered as the VB and CB edges, respectively. Investigations show that some results of this research are in good agreement with the observations and results of others in matters such as determining the PbS QDs bandgap, although there are significant differences in determining the exact position of the band edges.


Main Subjects

[1] Lu K., Wang Y., Liu Z., Han L., Shi G., Fang H., Chen J., Ye X., Chen S., Yang F., Shulga A. G., Wu T., Gu M., High‐Efficiency PbS Quantum‐Dot Solar Cells with Greatly Simplified Fabrication Processing via Solvent‐Curing, Adv. Mater., 30(25): 1707572 (2018).
[2] Bera D., Qian L., Tseng T.K., Holloway P.H. Quantum Dots and Their Multimodal Applications: A Review. Mater., 3(4): 2260-2345 (2010).
[3] Debnath  R., Tang  J., Barkhouse D.A., Wang X., Andras G., Pattantyus-Abraham A.G., Brzozowski L., Levina L., Edward H. Sargent E.H., Ambient-Processed Colloidal Quantum Dot Solar Cells Via Individual Pre-Encapsulation of Nanoparticles,
J. Am. Chem. Soc., 132(17): 5952-5953 (2010).
[4] Jiao Y., Gao X., Lu J., Chen Y., Zhou J., Li X., A Novel Method for PbS Quantum Dot Synthesis, Mater. Lett., 72: 116-118 (2012).
[5] Jun H.K., Careem M.A., Arof A.K., A Suitable Polysulfide Electrolyte for CdSe Quantum Dot-Sensitized Solar Cells, Int. J. Photoenergy, 2013 (2013).
[6] Kamat P.V., Quantum Dot Solar Cells. Semiconductor Nanocrystals As Light Harvesters, J. Phys. Chem. C, 112(48): 18737-18753 (2008).
[7] Heidaripour A., Ajami N., Miandari S., Research of Gerischer Model in Transferring Electrons Between Energy States of CdS Thin Film and Ferro-Ferric Redox System, Phys. Sci. Res. Int, 3:59-64 (2015).
[9] Zheng F., Liu Y., Ren W., Sunli Z., Xie X., Cui Y., Hao Y., Application of Quantum Dots in Perovskite Solar Cells, Nanotechnology, 32(48): 482003 (2021).
[10] Ajami N., Ehsani A., Babaei F., Heidaripour A., Electrosynthesis and Optical Modeling of ZnO nanostructures, Iran. Chem. Commun., 3: 85-92 (2015).
[11] Keis K., Magnusson E., Lindström H., Lindquist S.E., Hagfeldt A., A 5% Efficient Photoelectrochemical Solar Cell Based on Nanostructured ZnO Electrodes, Sol. Energy Mater. Sol. Cells, 73(1): 51-58 (2007).
[12] Martinson A.B.F., Elam J.W., Hupp J.T., Pellin M.J., ZnO Nanotube Based Dye-Sensitized Solar Cells, Nano Lett., 7(8): 2183-2187 (2007).
[13] Tena-Zaera R., Elias J., Lévy-Clément C., ZnO Nanowire Arrays: Optical Scattering and Sensitization to Solar Light, Appl. Phys. Lett., 93(23): 233119 (2008).
[14] Jovanovski V., González-Pedro V., Giménez S., Azaceta E., Cabañero G., Grande H., Tena-Zaera R., Mora-Seró I., Bisquert J., A Sulfide/Polysulfide-Based Ionic Liquid Electrolyte for Quantum Dot-Sensitized Solar Cells, J. Am. Chem. Soc., 133(50): 20156-20159 (2011).
[15] Cuharuc A.S., Kulyuk L.L., Lascova R.I., Mitioglu A.A., Dikusar A.I., Electrochemical Characterization of Pbs Quantum Dots Capped with Oleic Acid and Pbs Thin Films-A Comparative Study, Surface Engineering and Applied Electrochemistry, 48(3): 193-211 (2012).
[16] Azevedo J., Seipp T., Burfeind J., Sousa C., Bentien A., Araújo J.P., Mendes A., Unbiased Solar Energy Storage: Photoelectrochemical Redox Flow Battery, Nano Energy, 22: 396-405 (2016).
[17] Miandari S., Jafarian M., Mahjani M.G., Gobal F., Heidaripour A., Electrochemical Determination of CdS Band Edges and Semiconducting Parameters, Bull. Chem. Soc. Jpn., 88(6): 814-820 (2015).
[18] Aderne R.E., Borges B.G.A.L., Ávila H.C., Kieseritzky F.V., Hellberg J., Koehler M., Cremona M., Roman L.S., Araujo C.M, Rocco M.L.M., Marchiori C.F.N., On the Energy Gap Determination of Organic Optoelectronic Materials: The Case of Porphyrin Derivatives, Mater. Adv., 3(3): 1791-1803 (2022).
[19] Bard A.J., Faulkner L.R., "Electrochemical Methods: Fundamentals and Applications", Vol. 2. John Wiley & Sons Inc., New York (1980).
[20] Memming R., "Semiconductor Electrochemistry", John Wiley & Sons Inc. (2015).
[21] Du K., Liu G., Chen X., Wang K., PbS Quantum Dots Sensitized TiO2 Nanotubes for Photocurrent Enhancement. J. Electrochem. Soc., 162(10): E251 (2015).
[23] Heidaripour  A., Jafarian M., Gobal F., Mahjani M. G., Miandari S., Investigation of Pb/PbS a Positive Schottky Junction Formed oOn Conductive Glass in Contact with Alkaline Solution, J. Appl. Phys., 116(3): 034906 (2014).
[24] Hajnorouzi A., Afzalzadeh R., Ghanati F., Ultrasonic irradiation effects on Electrochemical Synthesis of ZnO Nanostructures, Ultrason. Sonochem., 21(4): 1435-1440 (2014).
[25] Murugesan R., Marimuthu K., Kasinathan K., An Investigation of SILAR Grown CdO Thin Films, Iran. J. Chem. Chem. Eng. (IJCCE), 38(4): 11-17 (2019).
[26] Ding C., Zhang Y., Liu F., Nakazawa N., Huang Q., Hayase S., Ogomi Y., Toyoda T., Wang R., Shen Q., Recombination Suppression in PbS Quantum Dot Heterojunction Solar Cells by Energy-Level Alignment in the Quantum Dot Active Layers, ACS Appl. Mater. Interfaces, 10(31): 26142-26152 (2017).
[27] Janotti A., Van de Walle C.G., Native Point Defects in ZnO. Phys. Rev. B, 76(16):  165202 (2007).
[28] Memming R., "Semiconductor Electrochemistry". John Wiley & Sons Inc. (2008).
[29] Bisquert J., Fabregat-Santiago F., Mora-Seró I., Garcia-Belmonte G., Barea E.M., Palomares E., A Review of Recent Results on Electrochemical Determination of the Density of Electronic States of Nanostructured Metal-Oxide Semiconductors and Organic Hole Conductors, Inorg. Chim. Acta, 361(3): 684-698 (2008).
[31] Khan S.U.M, Kainthla R.C., Bockris J.O.M, The Redox Potential and the Fermi Level in Solution, J. Phys. Chem., 91(23): 5974-5977 (1987).