Evolution and Testing of a Metallic Ebulliometer for VLE Determination

Document Type : Research Article

Authors

Escuela de Ingenierías Industriales y Civiles. Universidad de Las Palmas de Gran Canaria 35017 Las Palmas de Gran Canaria, Canary Islands, SPAIN

Abstract

An ebulliometer designed with automated feeding was tested and verified in this work. The ebulliometer is made of stainless steel. The feeding of the substances is automatically controlled with a computer. In the equipment, both the liquid and vapor phases are recirculated.  The binary mixtures isobutyl acetate + 1–propanol and isobutyl acetate + 2–propanol were studied and the vapor–liquid equilibrium of these mixtures was determined at 101 kPa. The isobaric T–x–y data are reported, including the azeotropic point of the isobutyl acetate + 1–propanol binary system. The calculations have been carried out considering the non–ideal vapor phase and the activity coefficients of the liquid phase have been obtained. The thermodynamic consistency of the system was verified with the Van Ness point–to–point test. The f–f approach was used to evaluate the data reproducibility by considering the Perturbed Chain–Statistical Associating Fluid Theory (PC–SAFT).

Keywords

Main Subjects


[1] Susial P., Apolinario J.C., Rodríguez–Henríquez J.J., Castillo V.D., Estupiñan E.J., Isobaric VLE at 0.6 MPa for Binary Systems Isobutyl Acetate + Ethanol, +1–Propanol or +2–Propanol, Fluid Phase Equilib, 331: 12–17 (2012).
[2] Susial P., Apolinario J.C., Castillo V.D., Estupiñan E.J., Rodríguez–Henríquez J.J., Isobaric VLE for the binary systems Isobutyl Acetate+Methanol or +1–Propanol at 0.15 MPa, Afinidad, 69: 95–100 (2012).
[3] Susial P., Rodríguez–Henríquez J.J., Apolinario J.C., Castillo V.D., Estupiñan E.J., Vapour Pressures and Vapour–Liquid Equilibria of Binary Systems of n–Propyl Acetate and Isobutyl Acetate with Ethanol or 2–Propanol at 0.15 MPa, J. Serb. Chem, Soc, 77: 1243–1257 (2012).
[4] Van Ness H.C., Byer S.M., Gibbs R.E., Vapor–Liquid Equilibrium: Part I. An Appraisal of Data Reduction Methods, AIChE J., 19: 238–244 (1973).
[5] Fredenslund A., Gmehling J., Rasmussen P.,Vapor–Liquid Equilibria Using UNIFAC, A Group Contribution Model”, Elsevier, Amsterdam, (1977).
[6] Shadloo A., Peyvandi K., A Simple Method to Reduce the Optimized Parameters of Aqueous Amino Acid Solutions Using Association EOSs, Iran. J. Chem. Chem. Eng. (IJCCE), 40 (3): 920-933 (2021).
[7] Mahmoudabadi S.Z., Pazuki G., Application of PC-SAFT EOS for Pharmaceuticals: Solubility, Co-Crystal and Thermodynamic Modelling, J. Pharm. Sci. 110 (6): 2442-2451 (2021).
[8] Feng Z., Panuganti S.R., Chapman W.G., Predicting Solubility and Swelling Ratio of Blowing Agents in Rubbery Polymers Using PC-SAFT Equation of State, Chem. Eng. Sci. 183: 306-328 (2018).
[9] Seitmaganbetov N., Rezaei N., Shafiei A., Characterization of Crude Oils and Asphaltenes Using the PC-SAFT EoS: A Systematic Review, Fuel, 291: 120180 (2021).
[10] Gross J., Sadowski G., Perturbed−Chain, SAFT an Equation of State Based on a Perturbation Theory for Chain Molecules, Ind. Eng. Chem. Res., 40: 1244–1260 (2001).
[11] Gross J., Sadowski G., Application of the Perturbed−Chain SAFT Equation of State to Associating Systems. Ind. Eng. Chem. Res., 41: 5510–5515 (2002).
[12] Susial P., Sosa–Rosario A., Rios–Santana R., Vapor–Liquid Equilibria for Ethyl Acetate + Methanol at (0.1, 0.5, and 0.7) MPa. Measurements with a New Ebulliometer,  J. Chem. Eng. Data, 55: 5701–5706  (2010).
[13] Susial P., Rios–Santana R., Sosa–Rosario A., VLE Data of Methyl Acetate+Methanol at 1.0, 3.0 and 7.0 bar with a New Ebulliometer, J. Chem. Eng. Jpn., 43: 650–656 (2010).
[14] De–Afonso C., Ezama R., Losada P., Calama M.A., Llanas B., Pintado M., Saenz de la Torre A.F., Isobaric Vapor–Liquid Equilibrium. III. Development and Testing of a Small Capacity Equilibrium Still, An. Quim, 79: 243–253 (1983) (in Spanish).
[15] Susial P., García−Vera D., Montesdeoca I., Santiago D.E., López−Beltrán J., Measurements and Modeling of VLE Data for Butyl Acetate with 2−Propanol or 2−Butanol. Binary Systems at 0.15 and 0.6 MPa,  J. Chem. Eng. Data, 62: 2296−2306 (2017).
[16] Susial P., García−Vera D., Marrero–Pérez A.J., Herrera–Vega P., Rodríguez–Domínguez C., Tauste–Sánchez Y., Experimental Setup with Automatic Control. High Pressure VLE Data of Binary Systems 2–Butanol with n–Heptane and 2, 2, 4–Trimethylpentane at Both 1.5 MPa and 2.0 MPa, J. Chem. Thermodyn., 142: 105997 (2020).
[17] Baker J.A., Henderson D., Perturbation Theory and Equation of State for Fluids: The Square−Well Potential, J. Chem. Phys., 47: 2856–2861 (1967).
[19] Chapman W.G.; Jackson G.; Gubbins K.E. Phase Equilibria of Associating Fluids. Chain Molecules with Multiple Bonding Sites. Mol. Phys., 65: 1057–1079 (1988).
[20] Chapman W.G., Gubbins K.E., Jackson G., Radosz M., SAFT: Equation−of−State Solution Model for Associating Fluids, Fluid Phase Equilib., 52: 31–38 (1989).
[21] Wertheim M.S., Fluids with Highly Directional Attractive Forces. I. Statistical Thermodynamics,  J. Stat. Phys., 35: 19–34 (1984).
[23] Wertheim M.S., Fluids with Highly Directional Attractive Forces. III. Multiple Attraction Sites, J. Stat. Phys., 42: 459–476 (1986).
[24] Wertheim M.S., Fluids with Highly Directional Attractive Forces. IV. Equilibrium Polymerization, J. Stat. Phys., 42: 477–492 (1986).
[25] Wolbach J.P., Sandler S.I., Using molecular Orbital Calculations to Describe the Phase Bahavior of cross−Associating Mixtures, Ind. Eng. Chem. Res., 37: 2917–2928 (1988).
[26] Baird Z., “PC-SAFT” GitHub, https://github.com/CoolProp/PC−SAFT (last accessed10/05/2022).
[27] Daubert T.E., Danner R.P., “Physical and Thermodynamic Properties of Pure Chemicals: Data Compilation”, Hemisphere Publishing Co., New York (1989).
[28] Susial P., García D., Susial R., Clavijo Y.C., Martín A., Measurement and Modelization of VLE of Binary Mixtures of Propyl Acetate, Butyl Acetate or Isobutyl Acetate with Methanol at Pressure of 0.6 MPa, Chin. J. Chem. Eng., 24: 630–637 (2016).
[29] Susial P., García–Vera D., González–Domínguez J. D., Herrera–Vega P., Measurement and Modelization of VLE for Butyl Acetate with Methanol, Ethanol, 1–Propanol, and 1–Butanol. Experimental Data at 0.15 MPa, J. Chem. Eng. Data, 63: 2228−2242 (2018).
[30] Nelder J., Mead R., A Simplex Method for Function Minimization, Comput., J. 7: 308–313 (1965).
[31] Hayden J.G., O’Connell J.P., A Generalised Method for Predicting Second Virial Coefficients, Ind. Eng. Chem. Process Des. Dev., 14: 209–216 (1975).
[32] Yen L.C., Woods S.S., A Generalized Equation for Computer Calculation of Liquid Densities, AIChE J., 12: 95–99 (1966).
[33] Susial P., Sosa-Rosario A., Rodríguez-Henríquez J.J., Ríos-Santana R., Vapor Pressure and VLE Data Measurements on Ethyl Acetate/Ethanol Binary System at 0.1, 0.5 and 0.7 MPa, J. Chem. Eng. Jpn., 44: 155-163 (2011).
[34] Gmehling J., Menke J., Krafczyk J., Fischer K., “Azeotropic Data. 2ª ed., Part 1”, Ed. Wiley–VCH Verlag, Weinheim, Germany (2004).
[35] Raviart P.A., Thomas, J.M. Primal Hybrid Finite Element Methods for 2nd order Elliptic Equations, Math. Comp., 31: 391–413 (1977).
[36] Tihic A., Kontogeorgis G.M., Von Solms N., Michelsen M.L., A Predictive Group Contribution Simplified PC−SAFT Equation of State: Application to Polymer Systems, Ind. Eng. Chem. Res., 47: 5092–5101 (2008).