Bacterial Nanocellulose -A Remarkable Polymer for Biomedical Applications: Production, Engineering, and Recent Advances and Developments

Document Type : Review Article


Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), P.O. Box 31787-316 Tehran, I.R. IRAN


Bacterial NanoCellulose (BNC), a unique and promising natural polymer, due to its renewability, excellent biological features, remarkable physical properties, and special surface chemistry has received much attention for biomedical applications in recent years. There are several methods for synthesizing BNC, each with its own set of benefits and drawbacks. Modification approaches are used significantly to improve the properties of BNC or BNC-based structures for long-term and short-term biomedical applications. The fabrication of BNC-based antimicrobial materials for wound dressings, drug delivery, and hard and soft tissue regeneration is a major concern of many researchers. A wide range of biomaterials such as antibiotics, metal, and metal oxide nanoparticles are used for preparing BNC-based antimicrobial structures.  In this review, we presented the main and necessary information on the key aspects of synthesis and BNC properties. Furthermore, recent literature related to the preparation and biomedical applications of BNC-based materials is reviewed. Aligned with the current trends in BNC, BNC-based biocomposites present a great field to be explored and other amazing characteristics can be expected in relation to soft and hard tissue repair, drug delivery, and other biomedical applications in the near future.


Main Subjects

[1] Barja F., Bacterial Nanocellulose Production and Biomedical Applications, J. Biomed. Res., 35(4): 310 (2021).
[2] Reshmy R., Philip E., Thomas D., Madhavan A., Sindhu R., Binod P., Varjani S., Awasthi MK., Pandey A., Bacterial Nanocellulose: Engineering, Production, and Applications, Bioengineered, 12(2): 11463 (2021).
[3] Abol-Fotouh D., Hassan M.A., Shokry H., Roig A., Azab M.S., Kashyout A.E.-H.B., Bacterial Nanocellulose from Agro-Industrial Wastes: Low-Cost And Enhanced Production by Komagataeibacter Saccharivorans MD1, Sci. Rep., 10(1): 1-14 (2020).
[4] Swingler S., Gupta A., Gibson H., Kowalczuk M., Heaselgrave W., Radecka I., Recent Advances and Applications of Bacterial Cellulose in Biomedicine, Polymers, 13(3): 412 (2021).
[5] Lahiri D., Nag M., Dutta B., Dey A., Sarkar T., Pati S., Edinur H.A., Abdul Kari Z., Mohd Noor N.H., Ray R.R., Bacterial Cellulose: Production, Characterization and Application as Antimicrobial Agent, Int. J. Mol. Sci., 22(23):12984 (2021).
[6] Akhlaghi M.A., Bagherpour R., Kalhori H., Application of Bacterial Nanocellulose Fibers as Reinforcement in Cement Composites, Constr. Build. Mater., 241: 118061 (2020).  
[7] Almeida T., Silvestre A.J., Vilela C., Freire C.S., Bacterial Nanocellulose Toward Green Cosmetics: Recent Progresses and Challenges, Int. J. Mol. Sci., 22(6): 2836 (2021).  
[8] Khanchezar S., Babaeipour V., Bacterial Cellulose Production Enhancement in Repeated Static Batch Culture of Acetobacter Xylinum in Bench-Scale, Iran. J. Chem. Chem. Eng. (IJCCE), 41(10): 3573-3581 (2022).
[10] Soleimani A., Hamedi S., Babaeipour V., Rouhi M., Enhanced Production of Bacterial Cellulose in Aerated and Non-Aerated Rotating Biological Contactor (RBC) by Acetobacter xylinium, Bioprocess Biosys. Eng., 44: 1071-1080 (2021).
[11] Gorgieva S., Trček J., Bacterial Cellulose: Production, Modification and Perspectives in Biomedical Applications, Nanomaterials, 9(10): 1352 (2019).
[12] Mustafa A., Babaeipour V., Roochi M., Kranchezar S., "Enhancement of Bacterial Cellulose (BC) Production by Optimizing of Inoculation Condition: RSM Approach", Iran Polym. Petrochem. Inst, 11 (2014).
[13] Vismara E., Bernardi A., Bongio C., Farè S., Pappalardo S., Serafini A., Pollegioni L., Rosini E., Torri G., Bacterial Nanocellulose and its Surface Modification By Glycidyl Methacrylate and Ethylene Glycol Dimethacrylate. Incorporation of Vancomycin and Ciprofloxacin, Nanomaterials, 9(12): 1668 (2019).
[14] Osorio M., Ortiz I., Gañán P., Naranjo T., Zuluaga R., van Kooten T., Castro C., Novel Surface Modification of Three-Dimensional Bacterial Nanocellulose with Cell-Derived Adhesion Proteins For Soft Tissue Engineering, Mater Sci. Eng. C Mater. Biol. Appl., 100: 697-705 (2019). 
[15] Arias S.L., Shetty A.R., Senpan A., Echeverry-Rendón M., Reece L.M., Allain J.P., Fabrication of A Functionalized Magnetic Bacterial Nanocellulose with Iron Oxide Nanoparticles, Jo.VE, (111): e52951 (2016).
[17] Huang Y., Wang J., Yang F., Shao Y., Zhang X., Dai K., Modification and Evaluation of Micro-Nano Structured Porous Bacterial Cellulose Scaffold for Bone Tissue Engineering, Mater. Sci. Eng. C Mater. Biol. Appl., 75: 1034-1041(2017). 
[18] Meftahi A., Nasrolahi D., Babaeipour V., Alibakhshi S., Shahbazi S., Investigation of Nano Bacterial Cellulose Coated by Sesamum Oil for Wound Dressing Application, Procedia Mater. Sci., 11: 212-216 (2015).
[19]Arisoly Xavier Acasigua G., Molina de Olyveira G., Maria Manzine Costa L., Iglesias Braghirolli D., Christina Medeiros Fossati A., Carlos Guastaldi A., Pranke P., de Cerqueira Daltro G., Basmaji P., Novel Chemically Modified Bacterial Cellulose Nanocomposite as Potential Biomaterial for Stem Cell Therapy Applications, Curr. Stem. Cell. Res. Ther., 9(2): 117-123 (2014).
[21] Wen C., Hong Y., Wu J., Luo L., Qiu Y., Ye J., The facile Synthesis and Bioactivity of a 3D Nanofibrous Bioglass Scaffold Using an Amino-Modified Bacterial Cellulose Template, RSC Adv., 8(26): 14561-14569 (2018).
[22] de Olyveira GM., dos Santos Riccardi C.,  dos Santos M.L., Costa L.M.M., Daltro P.B., Basmaji P., de Cerqueira Daltro G., Guastaldi A.C., Physically Modified Bacterial Cellulose Biocomposites for Dental Materials Scaffolds, Materials Focus, 4(2): 111-117 (2015).
[23] Khan S., Ul-Islam M., Ikram M., Islam SU., Ullah M.W., Israr M., Jang J.H., Yoon S., Park J.K., Preparation and Structural Characterization of Surface Modified Microporous Bacterial Cellulose Scaffolds: A Potential Material for Skin Regeneration Applications in Vitro and in Vivo, Int. J. Biol. Macromol., 117: 1200-1210 (2018). 
[25] Luo Z., Liu J., Lin H., Ren X., Tian H., Liang Y., Wang W., Wang Y., Yin M., Huang Y., In Situ Fabrication of Nano ZnO/BCM Biocomposite Based on MA Modified Bacterial Cellulose Membrane for Antibacterial and Wound Healing, Int. J. Nanomedicine, 15: 1 (2020).
[26] Weyell P., Beekmann U., Küpper C., Dederichs M., Thamm J., Fischer D., Kralisch D., Tailor-Made Material Characteristics of Bacterial Cellulose for Drug Delivery Applications in Dentistry, Carbohydr. Polym., 207: 1-10 (2019). 
[27] Beekmann U., Schmölz L., Lorkowski S., Werz O., Thamm J., Fischer D., Kralisch D., Process Control and Scale-Up of Modified Bacterial Cellulose Production for Tailor-Made Anti-Inflammatory Drug Delivery Systems, Carbohydr. Polym., 236: 116062 (2020).
[28] Codreanu A., Balta C., Herman H., Cotoraci C., Mihali CV., Zurbau N., Zaharia C., Rapa M., Stanescu P., Radu I.-C., Bacterial Cellulose-Modified Polyhydroxyalkanoates Scaffolds Promotes Bone Formation in Critical Size Calvarial Defects In Mice, Materials, 13(6): 1433 (2020).
[29] Cacicedo M.L., León I.E., Gonzalez J.S., Porto L.M., Alvarez V.A., Castro G.R., Modified Bacterial Cellulose Scaffolds for Localized Doxorubicin Release in Human Colorectal HT-29 Cells, Colloids Surf. B, 140: 421-429 (2016).
[30] Piasecka-Zelga J., Zelga P., Szulc J., Wietecha J., Ciechańska D., An in Vivo Biocompatibility Study of Surgical Meshes Made from Bacterial Cellulose Modified with Chitosan, Int. J. Biol. Macromol., 116: 1119-1127 (2018).
[31] Lai C., Hu KS., Wang Q.L., Sheng LY., Zhang SJ., Zhang Y., Anti‐Adhesion Mesh for Hernia Repair Based on Modified Bacterial Cellulose, Starch‐Stärke, 70(11-12) 1700319 (2018).
[32] Yang J., Zhu Z., Liu Y., Zheng Y., Xie Y., Lin J., Cai T., Double-Modified Bacterial Cellulose/Soy Protein Isolate Composites by Laser Hole Forming and Selective Oxidation Used for Urethral Repair, Biomacromolecules, 23(1): 291-302 (2021). 
[33] Zhang L., Wei F., Bai Q., Song D., Zheng Z., Wang Y., Liu X., Abdulrahman A.-A., Bian Y., Xu X., Oscillating magnetic field regulates cell adherence and endothelialization based on magnetic nanoparticle-modified bacterial cellulose, ACS Appl. Mater. Interfaces, 12(47): 52467-52478 (2020).
[34] Volova TG., Prudnikova SV., Sukovatyi AG., Shishatskaya EI., Production and properties of bacterial cellulose by the strain Komagataeibacter xylinus B-12068, Appl. Microbiol. Biotechnol., 102(17): 7417-7428 (2018). 
[35] Babaeipour V., Hamid M., Chegeni A., Imani M., Bahrami A., Study of Structural Characteristics of Regenerated Bacterial and Plant Cellulose, Polym. Sci. Ser. A+, 63(4): 412-419 (2021). 
[36] Bagherniya M., Babaeipour V., Soleimani A., Optimization of Bacterial Nano-Cellulose Production In Bench-Scale Rotating Biological Contact Bioreactor By Response Surface Methodology, Iran. J. Chem. Chem. Eng. (IJCCE), 40(2): 407-416 (2021).
[37] Sajadi E., Fatemi SS.-A., Babaeipour V., Deldar AA., Yakhchali B., Anvar MS., Increased Cellulose Production By Heterologous Expression Of Bcsa And B Genes From Gluconacetobacterxylinus In E. Coli Nissle 1917, Bioprocess Biosyst. Eng., 42(12): 2023-2034 (2019).    
[38] Revin V., Liyaskina E., Nazarkina M., Bogatyreva A., Shchankin M., Cost-Effective Production Of Bacterial Cellulose Using Acidic Food Industry By-Products, Braz. J. Microbiol., 49:  151-159 (2018).
[40] Hsieh J.-T., Wang M.-J., Lai J.-T., Liu H.-S., A Novel Static Cultivation of Bacterial Cellulose Production by Intermittent Feeding Strategy, Taiwan Inst. Chem. Eng., 63:  46-51 (2016). 
[41] Sijabat EK., Nuruddin A., Aditiawati P., Purwasasmita BS., Optimization on the Synthesis of Bacterial Nano Cellulose (BNC) From Banana Peel Waste for Water Filter Membrane Applications, Mater. Res. Express, 7(5): 055010 (2020).
[42] Carvalho T., Guedes G., Sousa F.L., Freire C.S., Santos H.A., Latest Advances On Bacterial Cellulose‐Based Materials for Wound Healing, Delivery Systems, and Tissue Engineering, Biotechnol. J., 14(12): 1900059 (2019).  
[43] Mandour Y.M.H., Mohammed S., Menem M.A., Bacterial Cellulose Graft Versus Fat Graftin Closure of Tympanic Membrane Perforation, Am. J. Otolaryngol., 40(2): 168-172 (2019). 
[44] Li J., Cha R., Mou K., Zhao X., Long K., Luo H., Zhou F., Jiang X., Nanocellulose‐Based Antibacterial Materials, Adv. Healthc Mater, 7(20): 1800334 (2018). 
[46] Keshipour S., Maleki A., Modification of Cellulose, Nat. Bio-Act. Compounds. Prod. Appl., 1:  435-486 (2019).
[48] Lemnaru G.-M., Truşcă R.D., Ilie C.-I., Țiplea R.E., Ficai D., Oprea O., Stoica-Guzun A., Ficai A., Dițu L.-M., Antibacterial Activity of Bacterial Cellulose Loaded with Bacitracin and Amoxicillin: In Vitro Studies, Molecules, 25(18): 4069 (2020). 
[50] Liao N., Unnithan AR., Joshi MK., Tiwari AP., Hong ST., Park C.-H., Kim CS., Electrospun Bioactive Poly (Ɛ-Caprolactone)–Cellulose Acetate–Dextran Antibacterial Composite Mats for Wound Dressing Applications, Colloid Surface A, 469  194-201(2015). 
[52] Adepu S., Khandelwal M., Drug Release Behaviour and Mechanism from Unmodified and In Situ Modified Bacterial Cellulose, Proc. Indian Natl. Sci. Acad, 87(1): 110-120(2021).
[53] Jantarat C., Attakitmongkol K., Nichsapa S., Sirathanarun P., Srivaro S., Molecularly Imprinted Bacterial Cellulose for Sustained-Release Delivery of Quercetin, J. Biomater. Sci., Polym. 31(15): 1961-1976 (2020). 
[54] Shao W., Liu H., Wang S., Wu J., Huang M., Min H., Liu X., Controlled Release and Antibacterial Activity of Tetracycline Hydrochloride-Loaded Bacterial Cellulose Composite Membranes, Carbohydr. Polym., 145:  114-120(2016). 
[56] Lazarini SC., de Aquino R., Amaral AC., Corbi FC., Corbi PP., Barud HS., Lustri WR., Characterization of Bilayer Bacterial Cellulose Membranes with Different Fiber Densities: A Promising System for Controlled Release of the Antibiotic Ceftriaxone, Cellulose, 23(1): 737-748 (2016). 
[57] Fonseca D.F., Carvalho J.P., Bastos V., Oliveira H., Moreirinha C., Almeida A., Silvestre A.J., Vilela C., Freire C.S., Antibacterial Multi-Layered Nanocellulose-Based Patches Loaded With Dexpanthenol For Wound Healing Applications, Nanomaterials, 10(12) 2469 (2020).  
[59] Wiegand C., Moritz S., Hessler N., Kralisch D., Wesarg F., Müller FA., Fischer D., Hipler U.-C., Antimicrobial Functionalization of Bacterial Nanocellulose by Loading with Polihexanide and Povidone-Iodine, J. Mater. Sci. Mater. Med., 26(10): 1-14(2015).
[60] Xiao Y., Rong L., Wang B., Mao Z., Xu H., Zhong Y., Zhang L., Sui X., A Light-Weight and High-Efficacy Antibacterial Nanocellulose-Based Sponge via Covalent Immobilization of Gentamicin, Carbohydr. Polym., 200:  595-601 (2018). 
[61] Kaplan E., Ince T., Yorulmaz E., Yener F., Harputlu E., Laçin NT., Controlled Delivery of Ampicillin and Gentamycin from Cellulose Hydrogels and Their Antibacterial Efficiency, J. Biomater. Tissue Eng., 4(7): 543-549 (2014). 
[62] Ye S., Jiang L., Wu J., Su C., Huang C., Liu X., Shao W., Flexible Amoxicillin-Grafted Bacterial Cellulose Sponges For Wound Dressing: In Vitro And In Vivo Evaluation, ACS Appl. Mater. Interfaces, 10(6): 5862-5870 (2018). 
[63] Xu Z., Zhang C., Wang X., Liu D., Release Strategies of Silver Ions from Materials for Bacterial Killing, ACS Appl. Bio. Mater., 4(5): 3985-3999 (2021).
[64] Shaikh S., Nazam N., Rizvi S.M.D., Ahmad K., Baig M.H., Lee EJ., Choi I., Mechanistic Insights into the Antimicrobial Actions of Metallic Nanoparticles and Their Implications for Multidrug Resistance, Int. J. Mol. Sci., 20(10): 2468 (2019).  
[66] Qiu H., Si Z., Luo Y., Feng P., Wu X., Hou W., Zhu Y., Chan-Park M.B., Xu L., Huang D., The Mechanisms and the Applications of Antibacterial Polymers in Surface Modification on Medical Devices, Front Bioeng Biotechnol, 8  910(2020). 
[67] Gomes L.C., Faria S.I., Valcarcel J., Vázquez J.A., Cerqueira M.A., Pastrana L., Bourbon A.I., Mergulhão F.J., The Effect of Molecular Weight on the Antimicrobial Activity of Chitosan from Loligo opalescens for Food Packaging Applications, Mar. Drugs, 19(7): 384 (2021).
[68] Shao Z., Yang Y., Fang S., Li Y., Chen J., Meng Y., Mechanism of the Antimicrobial Activity of Whey Protein-Ε-Polylysine Complexes Against Escherichia Coli and Its Application in Sauced Duck Products, Int. .J. Food Microbiol., 328: 108663 (2020).  
[69] Martínez Ávila H., Schwarz S., Feldmann E.-M., Mantas A., von Bomhard A., Gatenholm P., Rotter N., Biocompatibility Evaluation of Densified Bacterial Nanocellulose Hydrogel as an Implant Material For Auricular Cartilage Regeneration, Appl. Microbiol. Biotechnol., 98(17): 7423-7435 (2014). 
[70] Wu Z., Xie S., Kang Y., Shan X., Li Q., Cai Z., Biocompatibility Evaluation of a 3D-Bioprinted Alginate-Gelma-Bacteria Nanocellulose (BNC) Scaffold Laden with Oriented-Growth RSC96 Cells, Mater. Sci. Eng. C Mater. Biol. App.l, 129:  112393 (2021). 
[71] Chen X.Y., Low H.R., Loi X.Y., Merel L., Mohd Cairul Iqbal M.A., Fabrication and Evaluation of Bacterial Nanocellulose/Poly (Acrylic Acid)/Graphene Oxide Composite Hydrogel: Characterizations and Biocompatibility Studies for Wound Dressing, J. Biomed. Mater. Res. Part B, 107(6): 2140-2151 (2019). 
[72] Bao L., Tang J., Hong FF., Lu X., Chen L., Physicochemical Properties and In Vitro Biocompatibility of Three Bacterial Nanocellulose Conduits for Blood Vessel Applications, Carbohydr. Polym., 239: 116246 (2020).
[73] Osorio M., Cañas A., Puerta J., Díaz L., Naranjo T., Ortiz I., Castro C., Ex Vivo and In Vivo Biocompatibility Assessment (Blood And Tissue) of Three-Dimensional Bacterial Nanocellulose Biomaterials for Soft Tissue Implants, Sci. Rep., 9(1): 1-14 (2019).  
[74] Pötzinger Y., Rabel M., Ahrem H., Thamm J., Klemm D., Fischer D., Polyelectrolyte Layer Assembly of Bacterial Nanocellulose Whiskers with Plasmid DNA as Biocompatible Non-Viral Gene Delivery System, Cellulose, 25(3): 1939-1960 (2018). 
[75] Gabriel Franco R.A., Padalhin A.R., Patrick Cuenca J., Ventura R., Montecillo A., Fernando L., Lee B.-T., Characterization of Bacterial Nanocellulose Produced by Isolates From Philippine Nata Starter and Its Biocompatibility, J. Biomater. Appl., 34(3): 339-350 (2019).
[76] Wei Z., Pan P., Hong FF., Cao Z., Ji Y., Chen L., A Novel Approach for Efficient Fabrication of Chitosan Nanoparticles-Embedded Bacterial Nanocellulose Conduits, Carbohydr. Polym., 264: 118002(2021). 
[77] Pötzinger Y., Rahnfeld L., Kralisch D., Fischer D., Immobilization of Plasmids in Bacterial Nanocellulose as Gene Activated Matrix, Carbohydr. Polym., 209:  62-73 (2019).
[78] Alkhatib Y., Dewaldt M., Moritz S., Nitzsche R., Kralisch D., Fischer D., Controlled Extended Octenidine Release from a Bacterial Nanocellulose/Poloxamer Hybrid System, Eur. J. Pharm. Biopharm., 112: 164-176 (2017). 
[79] Apelgren P., Karabulut E., Amoroso M., Mantas A., Martínez Ávila Hc., Kölby L., Kondo T., Toriz G., Gatenholm P., In vivo Human Cartilage Formation in Three-Dimensional Bioprinted Constructs with a Novel Bacterial Nanocellulose Bioink, ACS Biomater. Sci. Eng., 5(5): 2482-2490(2019). 
[80] Ajdary R., Abidnejad R., Lehtonen J., Kuula J., Raussi-Lehto E., Kankuri E., Tardy B., Rojas O.J., Bacterial Nanocellulose Enables Auxetic Supporting Implants, Carbohydr. Polym., 284:119198 (2022). 
[81]Ludwicka K., Kolodziejczyk M., Gendaszewska‐Darmach E., Chrzanowski M., Jedrzejczak‐Krzepkowska M., [81] Rytczak P., Bielecki S., Stable Composite of Bacterial Nanocellulose and Perforated Polypropylene Mesh for Biomedical Applications, J. Biomed. Mater. Res. Part B, 107(4): 978-987 (2019).    
[82] Horbert V., Boettcher J., Foehr P., Kramer F., Udhardt U., Bungartz M., Brinkmann O., Burgkart RH., Klemm DO., Kinne RW., Laser Perforation and Cell Seeding Improve Bacterial Nanocellulose as a Potential Cartilage Implant in the In Vitro Cartilage Punch Model, Cellulose, 26(1): 647-664 (2019). 
[83] Hoff J., Karl B., Gerstmeier J., Beekmann U., Schmölz L., Börner F., Kralisch D., Bauer M., Werz O., Fischer D., Controlled Release of the α-Tocopherol-Derived Metabolite α-13′-Carboxychromanol from Bacterial Nanocellulose Wound Cover Improves Wound Healing, Nanomaterials, 11(8): 1939 (2021). 
[84] Sämfors S., Karlsson K., Sundberg J., Markstedt K., Gatenholm P., Biofabrication of Bacterial Nanocellulose Scaffolds with Complex Vascular Structure, Biofabrication, 11(4): 045010 (2019).
[85] Lang N., Merkel E., Fuchs F., Schumann D., Klemm D., Kramer F., Mayer-Wagner S., Schroeder C., Freudenthal F., Netz H., Bacterial Nanocellulose as A New Patch Material for Closure of Ventricular Septal Defects in a Pig Model, Eur. J. Cardiothorac. Surg., 47(6): 1013-1021(2015).  
[86] Vielreicher M., Kralisch D., Völkl S., Sternal F., Arkudas A., Friedrich O., Bacterial Nanocellulose Stimulates Mesenchymal Stem Cell Expansion and Formation of Stable Collagen-I Networks as a Novel Biomaterial in Tissue Engineering, Sci. Rep., 8(1): 1-14 (2018).   
[87] Queirós E., Pinheiro S., Pereira J., Prada J., Pires I., Dourado F., Parpot P., Gama M., Hemostatic Dressings Made of Oxidized Bacterial Nanocellulose Membranes, Polysaccharides, 2(1): 80-99 (2021). 
[88] Anton‐Sales I., Koivusalo L., Skottman H., Laromaine A., Roig A., Limbal Stem Cells on Bacterial Nanocellulose Carriers for Ocular Surface Regeneration, Small, 17(10): 2003937 (2021).
[89] Kumar A., Han S.-S., Efficacy of Bacterial Nanocellulose in Hard Tissue Regeneration: A Review, Materials, 14(17) 4777(2021). 
[90] Kheiry EV., Parivar K., Baharara J., Bazzaz BSF., Iranbakhsh A., The Osteogenesis of Bacterial Cellulose Scaffold Loaded with Fisetin, Iran. J. Basic Med. Sci., 21(9): 965(2018). 
[91] de Oliveira Barud H.G., da Silva R.R., Borges M.A.C., Castro G.R., Ribeiro S.J.L., da Silva Barud H., Bacterial Nanocellulose in Dentistry: Perspectives and Challenges, Molecules, 26(1): 49 (2020). 
[92] An S.-J., Lee S.-H., Huh J.-B., Jeong S.I., Park J.-S., Gwon H.-J., Kang E.-S., Jeong C.-M., Lim Y.-M., Preparation and Characterization of Resorbable Bacterial Cellulose Membranes Treated by Electron Beam Irradiation For Guided Bone Regeneration, Int. J. Mol. Sci, 18(11): 2236(2017).  
[93] Voicu G., Jinga S.-I., Drosu B.-G., Busuioc C., Improvement Of Silicate Cement Properties with Bacterial Cellulose Powder Addition for Applications in Dentistry, Carbohydr. Polym., 174:  160-170 (2017).  
[94] Wu H., Williams GR., Wu J., Wu J., Niu S., Li H., Wang H., Zhu L., Regenerated Chitin Fibers Reinforced with Bacterial Cellulose Nanocrystals as Suture Biomaterials, Carbohydr. Polym., 180:  304-313 (2018). 
[95] Farnezi Bassi A.P., Bizelli V.F., Brasil L.FdM., Pereira J.C., Al-Sharani H.M., Momesso G.A.C., Faverani L.P., Lucas F.dA., Is the Bacterial Cellulose Membrane Feasible for Osteopromotive Property?, Membranes, 10(9): 230 (2020).
[96] Kichler V., Teixeira LS., Prado M.M., Colla G., Schuldt D.P.V., Coelho B.S., Porto L.M., de Almeida J., A Novel Antimicrobial-Containing Nanocellulose Scaffold For Regenerative Endodontics, Restor. Dent. Endod., 46(2) (2021).
[97] Peng W., Ren S., Zhang Y., Fan R., Zhou Y., Li L., Xu X., Xu Y., Mgo Nanoparticles-Incorporated PCL/Gelatin-Derived Coaxial Electrospinning Nanocellulose Membranes For Periodontal Tissue Regeneration, Front Bioeng Biotechnol, 9:  216 (2021).  
[99] Abaszadeh M., Yazdanpanah M., Eskandarizadeh A., Mohammadzadeh I., Evaluation of Nanocellulose Biocompatibility And Of Compressive Strength Increase In Flowable Dental Composites, Int. J. Med. Dent, 24(2) (2020).
[100] Carvalho J.P., Silva A.C., Bastos V., Oliveira H., Pinto R.J., Silvestre A.J., Vilela C., Freire C.S., Nanocellulose-Based Patches Loaded with Hyaluronic Acid and Diclofenac Towards Aphthous Stomatitis Treatment, Nanomaterials, 10(4): 628 (2020). 
[101] Jinga S., Voicu G., Stoica-Guzun A., Stroescu M., Grumezescu A., Bleotu C., Biocellulose Nanowhiskers Cement Composites for Endodontic Use, Dig. J. Nanomater. Biostruct, 9:  543-550 (2014).
[102] Nezhadmokhtari P., Asadi N., Ghorbani M., Del Bakhshayesh A.R., Milani M., Akbarzadeh A., Development of a Novel Film Based on Bacterial Nanocellulose Reinforced Gelatin/Guar Gum Containing Honey for Wound Healing Applications, (2021).
[103] Lee Y.-J., An S.-J., Bae E.-B., Gwon H.-J., Park J.-S., Jeong S.I., Jeon Y.-C., Lee S.-H., Lim Y.-M., Huh J.-B., The Effect of Thickness of Resorbable Bacterial Cellulose Membrane on Guided Bone Regeneration, Materials, 10(3): 320 (2017).  
[104] Saska S., Teixeira L.N., de Castro Raucci L.M.S., Scarel-Caminaga RM., Franchi LP., Dos Santos R.A., Santagneli S.H., Capela M.V., de Oliveira P.T., Takahashi C.S., Nanocellulose-Collagen-Apatite Composite Associated with Osteogenic Growth Peptide for Bone Regeneration, Int. J. Biol. Macromol., 103:  467-476 (2017).  
[105] Luz E.P.C.G., Borges M.dF., Andrade F.K., Rosa M.dF., Infantes-Molina A., Rodríguez-Castellón E., Vieira R.S., Strontium Delivery Systems Based on Bacterial Cellulose and Hydroxyapatite for Guided Bone Regeneration, Cellulose, 25(11): 6661-6679 (2018).   
[106] Klinthoopthamrong N., Chaikiawkeaw D., Phoolcharoen W., Rattanapisit K., Kaewpungsup P., Pavasant P., Hoven V.P., Bacterial Cellulose Membrane Conjugated with Plant-Derived Osteopontin: Preparation and Its Potential for Bone Tissue Regeneration, Int. J. Biol. Macromol., 149:  51-59 (2020).  
[107] Sukul M., Nguyen TBL., Min Y.-K., Lee S.-Y., Lee B.-T., Effect Of Local Sustainable Release of BMP2-VEGF from Nano-Cellulose Loaded in Sponge Biphasic Calcium Phosphate on Bone Regeneration, Tissue Eng. Part A, 21(11-12): 1822-1836 (2015). 
[108] Rodriguez-Chanfrau J., Olyveira G., Santos M., Basmaji P., Veranes-Pantoja Y., Guastaldi A., Bacterial Cellulose Hydrogel Treated with Phosphoric Acid for Used as Biomaterial on Bone Tissue Regeneration, APJ, 1(5) 133-138 (2016). 
[109] Wang X., Tang S., Chai S., Wang P., Qin J., Pei W., Bian H., Jiang Q., Huang C., Preparing Printable Bacterial Cellulose Based Gelatin Gel to Promote in Vivo Bone Regeneration, Carbohydr. Polym., 270:  118342 (2021). 
[110] Ingole VH., Vuherer T., Maver U., Vinchurkar A., Ghule AV., Kokol V., Mechanical Properties and Cytotoxicity of Differently Structured Nanocellulose-Hydroxyapatite Based Composites for Bone Regeneration Application, Nanomaterials, 10(1): 25 (2019).   
[111] Cao S., Li Q., Zhang S., Liu K., Yang Y., Chen J., Oxidized Bacterial Cellulose Reinforced Nanocomposite Scaffolds for Bone Repair, Colloids Surf., B, 112316 (2022).
[112] Xiao J., Wei Q., Xue J., Liu Z., Li Z., Zhou Z., Chen F., Zhao F., Mesoporous Bioactive Glass/Bacterial Cellulose Composite Scaffolds for Bone Support Materials, Colloids Surf., A,  128693 (2022).  
[113] Noh YK., Da Costa ADS., Park YS., Du P., Kim I.-H., Park K., Fabrication of Bacterial Cellulose-Collagen Composite Scaffolds and Their Osteogenic Effect on Human Mesenchymal Stem Cells, Carbohydr. Polym., 219: 210-218 (2019). 
[114] Fatima T., Jolly R., Wani MR., Shadab G., Shakir M., Exploring the Bone Regeneration Potential of Bio-Fabricated Nano-Titania Reinforced Polyvinyl Alcohol/Nano-Cellulose Based Composite Film, Results Mater., 12:  100240 (2021).
[115] Holzer JC., Tiffner K., Kainz S., Reisenegger P., de Mattos IB., Funk M., Lemarchand T., Laaff H., Bal A., Birngruber T., A Novel Human Ex-Vivo Burn Model and the Local Cooling Effect of a Bacterial Nanocellulose-Based Wound Dressing, Burns, 46(8): 1924-1932 (2020). 
[116] Bacakova L., Pajorova J., Tomkova M., Matejka R., Broz A., Stepanovska J., Prazak S., Skogberg A., Siljander S., Kallio P., Applications of Nanocellulose/Nanocarbon Composites: Focus on Biotechnology and Medicine, Nanomaterials, 10(2): 196 (2020). 
[117] Goncalves S., Rodrigues I.P., Padrão J., Silva J.P., Sencadas V., Lanceros-Mendez S., Girão H., Gama F.M., Dourado F., Rodrigues L.R., Acetylated Bacterial Cellulose Coated with Urinary Bladder Matrix as a Substrate for Retinal Pigment Epithelium, Colloids Surf., B, 139:  1-9 (2016).  
[118] Coelho F., do Vale Braido G.V., Cavicchioli M., Mendes L.S., Specian S.S., Franchi L.P., Ribeiro S.J.L., Messaddeq Y., Scarel-Caminaga R.M., Capote T.S.O., Toxicity of Therapeutic Contact Lenses Based on Bacterial Cellulose with Coatings to Provide Transparency, Cont Lens Anterior Eye, 42(5): 512-519 (2019).
[119] Silveira RK., Coelho ARB., Pinto FCM., de Albuquerque AV., de Melo Filho DA., de Andrade Aguiar JL., Bioprosthetic Mesh of Bacterial Cellulose for Treatment of Abdominal Muscle Aponeurotic Defect In Rat Model, J. Mater. Sci. Mater. Med., 27(8): 1-9 (2016).