Investigation of the Synthesis and Reactor Evaluation of Alumina-Supported Cu Catalysts on CO Conversion in a WGS Reaction

Document Type : Research Article

Authors

1 Department of Chemical and Petroleum Engineering, Sharif University of Technology), P.O. Box 1458889694 Tehran, I.R. IRAN

2 Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), P.O. Box 3353136846 Tehran, I.R. IRAN

3 Department of Metallurgy and Materials Engineering, Iran University of Science and Technology, P.O. Box 16884613114 Tehran, I.R. IRAN

Abstract

Heterogeneous CuO-ZnO/Al2O3 is widely used in various petrochemical plants to synthesize a low-temperature water gas shift reaction. Six different synthesis routes, co-precipitation, deposition-precipitation, ultrasonic deposition precipitation, incipient wetness impregnation, urea-co-precipitation gelation method, and combined incipient wetness impregnation-urea combustion, were compared for the synthesis of a catalyst with 20/5/75 weight ratios for CuO-ZnO/Al2O3. The products were analyzed and compared through XRD, SEM, BET analysis, and an activity test. The catalyst prepared by the incipient wetness impregnation-combustion urea method (IWI-Urea) showed the highest activity for CO conversion (47%) among the other synthesized products, with CO conversion ranging from 1.3 to 39%, and a commercial catalyst with 8.8% CO conversion. Additionally, the optimum operational condition for the activity test, including reaction temperature, space velocity, and steam-to-CO ratio, was studied on the catalyst with the highest activity (synthesized through the IWI-Urea method). Experimental results also indicated that at lower temperatures, a feed space velocity of 30000 h−1 or higher led to the greatest CO conversions. Steam to CO ratio of 4 was also found to be optimum over the range of experimental conditions employed in this study. Reaction temperature was found to have the most significant effect on CO conversion compared with other operation factors employed in this study.

Keywords

Main Subjects


[1] Li D., Cai Y., Ding Y., Li R., Lu M., Jiang L., Layered Double Hydroxides as Precursors of Cu Catalysts for Hydrogen Production by Water-Gas Shift Reaction, International Journal of Hydrogen Energy, 40(32): 10016–10025 (2015).
[2] Sagata K., Kaneda Y., Yamaura H., Kobayashi S., Yahiro H. Influence of Coexisting Al2O3 on the Activity of Copper Catalyst for Water-Gas-Shift Reaction, International Journal of Hydrogen Energy, 39(35): 20639–20645 (2014).
[3] Price C., Pastor-Pérez L., le Saché E., Sepúlveda-Escribano A., Reina TR. Highly Active Cu-Zno Catalysts for the WGS Reaction at Medium–High Space Velocities: Effect of the Support Composition, International Journal of Hydrogen Energy, 42(16): 10747–10751 (2017).
[5] Sagata K., Imazu N., Yahiro H., Study on Factors Controlling Catalytic Activity for Low-Temperature Water–Gas-Shift Reaction on Cu-Based Catalysts, Catalysis Today, 201(3): 145–150 (2012).
[6] Rønning M., Huber F., Meland H., Venvik H., Chen D., Holmen A., Relating Catalyst Structure and Composition to the Water-Gas Shift Activity of Cu-Zn-Based Mixed-Oxide Catalysts, Catalysis Today, 100: 249–254 (2005).
[7] Li Y., Fu Q., Flytzani-Stephanopoulos M., Low-Temperature Water-Gas Shift Reaction over Cu-and Ni-Loaded Cerium Oxide Catalysts, Applied Catalysis B: Environmental, 27(3): 179–191
(2000).
[8] Bertau M., Offermanns H., Plass L., Schmidt F., Wernicke H.J., "Methanol: the Basic Chemical and Energy Feedstock of the Future", Springer, Asinger’s vision today, (2014).
[9] Behrens M, Kniep B, Kurr P, Schlogl R, Hieke M. Methanol Synthesis Catalyst on the Basis of Copper, Zinc, Aluminum, (2013).
[10] Behrens M., Kissner S., Girsgdies F., Kasatkin I., Hermerschmidt F., Mette K., et al. Knowledge-Based Development of a Nitrate-Free Synthesis Route for Cu/Zno Methanol Synthesis Catalysts via Formate Precursors. Chemical communications (Cambridge, England). 47(c): 1701–1703 (2011).
[11] Behrens M., Zander S., Kurr P., Jacobsen N., Senker J., Koch G., Ressler T., Fischer R.W., Schlögl R., Performance Improvement of Nano-Catalysts by Promoter-Induced Defects in the Support Material : Methanol Synthesis over Cu/ZnO:Al, Journal of the American Chemical Society, 135: 6061–6068 (2013).
[12] Chen H., Cao M., Zhao .L, Ciora R.J., Liu P.K.T., Manousiouthakis V.I., Tsotsis T.T., Experimental Study of an Intensified Water-Gas Shift Reaction Process Using a Membrane Reactor/Adsorptive Reactor Sequence, Industrial and Engineering Chemistry Research, 57(41): 13650–13660 (2018).
[13] Rhodes C., Hutchings G.J., Ward A.M., Water-Gas Shift Reaction: Finding the Mechanistic Boundary, Catalysis Today, 23: 43–58 (1995).
[14] Dufour J., Martos C., Ruiz A., Water Gas Shift Reaction, Elsevier (2012).
[15] Amos W.A., "Biological Water-Gas Shift Conversion of Carbon Monoxide to Hydrogen", (January): 1–21 (2004).
[16] Reddy G.K., Smirniotis P.G., Water Gas Shift Reaction Research Developments and Applications,  Elsevier (2015).
[18] Ebrahimi P., Kumar A., Khraisheh M., A Review of Recent Advances in Water-Gas Shift Catalysis for Hydrogen Production, Emergent Materials, 3(6): 881–917 (2020).
[19] Djinović P., Batista J., Pintar A., Calcination Temperature and Cuo Loading Dependence on CuO-CeO2 Catalyst Activity for Water-Gas Shift Reaction, Applied Catalysis A: General, 347(1): 23–33 (2008).
[20] Fekri R, Mirbagheri SA, Fataei E, Rajaei GE. Organic Compound Removal from Textile Wastewater by Photocatalytic and Sonocatalytic Processes in the Presence of Copper Oxide Nanoparticles. Iran. J. Chem. Chem. Eng. (IJCCE), 5(2): 93–103 (2021).
[21] Tanaka Y., Utaka T., Kikuchi R., Sasaki K., Eguchi K., CO Removal From Reformed Fuel over Cu/ZnO/Al2O3 Catalysts Prepared by Impregnation and Coprecipitation Methods, Applied Catalysis A: General, 238(1): 11–18 (2003).
[22] Fan R., Kyodo M., Tan L., Peng X., Yang G., Yoneyama Y., et al. Preparation and Application of Cu/ZnO Catalyst by Urea Hydrolysis Method for Low-Temperature Methanol Synthesis from Syngas, Fuel Processing Technology, 167: 69–77 (2017).
[23] Tabakova T., Idakiev V., Papavasiliou J., Avgouropoulos G., Ioannides T., Effect of Additives on the WGS Activity of Combustion Synthesized CuO/CeO2 Catalysts, Catalysis Communications, 8(1): 101–106 (2007).
[24] Tabakova T., Idakiev V., Avgouropoulos G., Papavasiliou J., Manzoli M., Boccuzzi F., Ioannides T., Highly Active Copper Catalyst for Low-Temperature Water-Gas Shift Reaction Prepared via a Cu-Mn Spinel Oxide Precursor, Applied Catalysis A: General, 451: 184–191 (2013).
[25] Maluf S.S., Nascente P.A.P., Assaf .EM., CuO and CuO-ZnO Catalysts Supported on CeO2 and CeO 2-LaO3 for Low Temperature Water-Gas Shift Reaction, Fuel Processing Technology, 91(11): 1438–1445 (2010).
[26] Jiang L., Zhu H., Razzaq R., Zhu M., Li C., Li Z., Effect of Zirconium Addition on the Structure and Properties of CuO/CeO2 Catalysts for High-Temperature Water-Gas Shift in an IGCC System. International Journal of Hydrogen Energy, 37(21): 15914–15924 (2012).
[27] Na H.S., Shim J.O., Ahn S.Y., Jang W.J., Jeon K.W., Kim H.M., Lee Y.L., Kim K.J., Roh H.S., Effect of Precipitation Sequence on Physicochemical Properties of CeO2 Support for Hydrogen Production From Low-Temperature Water-Gas Shift Reaction. International Journal of Hydrogen Energy. 43(37): 17718–17725 (2018).
[28] Smith P.J., Kondrat S.A., Chater P.A., Yeo B.R., Shaw G.M., Lu L., Bartley J.K., Taylor S.H., Spencer M.S., Kiely C.J., Kelly G.J., Park C.W., Jutchings G.J., A New Class of Cu/ZnO Catalysts Derived from Zincian Georgeite Precursors Prepared by Co-Precipitation, Chemical Science, 8(3): 2436–2447 (2017).
[29] Sadeghinia M., Rezaei M., Nemati Kharat A., Namayandeh Jorabchi M., Nematollahi B., Zareiekordshouli F., Effect of In2O3 On The Structural Properties and Catalytic Performance of The CuO/ZnO/Al2O3 Catalyst in CO2 and CO Hydrogenation to Methanol, Molecular Catalysis, 484: 110776 (2020).
[30] Ren S., Fan X., Shang Z., Shoemaker W.R., Ma L., Wu T., Li Sh., Klinghoffer N.B., Yu M., Liang X., Enhanced Catalytic Performance of Zr Modified CuO/ZnO/Al2O3 Catalyst for Methanol and DME Synthesis via CO2 Hydrogenation, Journal of CO2 Utilization, 36: 82–95 (2020).
[31] Guil-López R., Mota N., Llorente J., Millan E., Pawelec B.G., Fierro J.L.G., Navarro R.M., Unravelling the Structural Modification (Meso-Nano-) Of Cu/ZnO-Al2O3 Catalysts for Methanol Synthesis by the Residual Nano3 in Hydroxycarbonate Precursors, Catalysts, 10(11): 1–17 (2020).
[32] Anwar H., Abbas B., Mustafa A., Shahid M., Ahmad F., Naz I., Investigation of Doping Effect on Structural, Optical, Antibacterial and Toxicity Properties of Iron Doped Copper Oxide Nanostructures Prepared By Co-Precipitation Route, Iran. J. Chem. Chem. Eng. (IJCCE), 41(3): 777-786 (2021).
[33] Tanaka Y., Utaka T., Kikuchi R., Sasaki K., Eguchi K., CO Removal from Reformed Fuel over Cu/ZnO/ Al2O3 Catalysts Prepared by Impregnation and Coprecipitation Methods, Applied Catalysis A: General, 238(1): 11–18 (2003).
[34] Prasad R., Rattan G., Preparation Methods and Applications of CuO-CeO2 Catalysts: A Short Review, Bulletin of Chemical Reaction Engineering & Catalysis, 5(1): 7–30 (2010).
[35] Bickford ES, Velu S, Song C. Nano-Structured CeO2 Supported Cu-Pd Bimetallic Catalysts for the Oxygen-Assisted Water-Gas-Shift Reaction, Catalysis Today, 99(3–4): 347–357 (2005).
[36] Si R., Raitano J., Yi N., Zhang L., Chan S.W., Flytzani-Stephanopoulos M., Structure Sensitivity of the Low-Temperature Water-Gas Shift Reaction on Cu-CeO 2 Catalysts. Catalysis Today, 180(1): 68–80 (2012).
[37] Zhang C., Yang H., Gao P., Zhu H., Zhong L., Wang H., Wei W., Sun Y., Preparation and CO2 Hydrogenation Catalytic Properties of Alumina Microsphere Supported Cu-Based Catalyst by Deposition-Precipitation Method, Journal of CO2 Utilization, 17: 263–272 (2017).
[38] Sekizawa K., Yano S. ichi, Eguchi K., Arai H., Selective Removal of CO in Methanol Reformed Gas over Cu-Supported Mixed Metal Oxides, Applied Catalysis A: General, 169(2): 291–297 (1998).
[39] Utaka T., Sekizawa K., Eguchi K., CO Removal by Oxygen-Assisted Water Gas Shift Reaction over Supported Cu Catalysts, Applied Catalysis A: General, 195(x): 21–26 (2000).
[40] Rhodes C.N., Williams B.P., King F., Hutchings G.J., Promotion of Fe3O4/Cr2O3 High Temperature Water Gas Shift Catalyst, Catalysis Communications, 3(8): 381–384 (2002).
[41] Tanaka Y., Utaka T., Kikuchi R., Takeguchi T., Sasaki K., Eguchi K., Water Gas Shift Reaction for the Reformed Fuels over Cu/MnO Catalysts Prepared via Spinel-Type Oxide, Journal of Catalysis, 215(2): 271–278 (2003).
[42] Mahadevaiah N., Singh P., Mukri B.D., Parida S.K., Hegde M.S., Ce0.67Fe0.33O2-δ and Ce0.65Fe0. 33Pt0.02O2-δ: New Water Gas Shift (WGS) Catalysts, Applied Catalysis B: Environmental, 108–109: 117–126 (2011).
[43] Jeong D.W., Jang W.J., Shim J.O., Han W.B., Roh H.S., Jung U.H., Yoon W.L., Low-Temperature Water-Gas Shift Reaction over Supported Cu Catalysts. Renewable Energy. 65: 102–107 (2014).
[44] Yahiro H., Murawaki K., Saiki K., Yamamoto T., Yamaura H., Study on the Supported Cu-Based Catalysts for the Low-Temperature Water-Gas Shift Reaction, Catalysis Today. 126(3-4 SPEC. ISS.): 436–440 (2007).
[45] Zaherian A., Kazemeini M., Aghaziarati M., Alamolhoda S., Synthesis of Highly Porous Nanocrystalline Alumina as a Robust Catalyst for Dehydration of Methanol to Dimethyl Ether, Journal of Porous Materials, 20(1): 151–157 (2013).
[46] Kundakovic L, Flytzani-Stephanopoulos M. Cu- and Ag-Modified Cerium Oxide Catalysts for Methane Oxidation, Journal of Catalysis, 179(1): 203–221 (1998).
[47] Cullity B.D., Stock S.R., "Elements of X-Ray Diffraction", Prentice Hall. (2001).
[48] Djinović P., Batista J., Pintar A., Calcination Temperature and CuO Loading Dependence on CuO-CeO2 Catalyst Activity for Water-Gas Shift Reaction, Applied Catalysis A: General, 347(1): 23-33 (2008).
[49] Mota N., Guil-Lopez R., Pawelec B.G., Fierro J.L.G., Navarro R.M., Highly Active Cu/ZnO-Al Catalyst for Methanol Synthesis: Effect of Aging on its Structure and Activity, RSC Advances, 8(37): 20619–20629 (2018).
[50] Rebrov EV., Advances in Water-Gas Shift Technology: Modern Catalysts and Improved Reactor Concepts, Advances in Clean Hydrocarbon Fuel Processing: Science and Technology, 387–412 (2011).