One-Step Synthesis of Bovine Serum Albumin Nanoparticles by Hydrothermal Green Treatment

Document Type : Research Article


1 Department of Chemical & Environmental Engineering, Faculty of Engineering, University of Putra Malaysia, Selangor, 43400, MALAYSIA

2 Department of Chemistry, Faculty of Science, University of Malaysia, Kuala Lumpur, MALAYSIA

3 New Technologies Research Center, Amirkabir University of Technology, Tehran Polytechnic, P.O. Box 15875-4413 Tehran, I.R. IRAN


The non-toxic BSA-based NanoParticles (NPs) are developed without any additives with hydrothermal SubCritical Water Treatment (SCWT). The optimum BSA-based NPs are gained by applying Response Surface Methodology (RSM) based on particle size, zeta potential, and polydispersity. The SCWT conditions are optimized in terms of these three dependent variables, which have significant impacts on the BSA-based NPs application. The optimum BSA-based NPs prepared with 2.73% (w/v) of initial BSA solution concentration, the lowest initial concentration that is used to synthesize BSA-based NPs by now. The SCWT condition of 173 °C and 2.07 min of SCWT holding time shows that the zeta potential of -38.87 mV with the finest particle size and PI (147.32 nm and 0.24, respectively) is the optimized composition. The fabricated BSA-based NPs are characterized by the UV-vis, screening electron microscope (SEM), and stability assessment study. 


Main Subjects

[1] Vauthier C. and Ponchel G., "Polymer Nanoparticles for Nanomedicies", 1st ed., Springer International Publishing, (2016).
[3] Esfahan Z.M., Izhar S., Shah Ismail M.H., Hiroyuki Y., Subcritical Water Treatment of Bovine Serum Albumin Pathway to Produce Superabsorbent Biomaterial as Green Technology, Mater. Today Sustain, 100087 (2021).
[4] Stablein M.J., Aierzhati A., Watson J., Si B., Zhang Y., Characterization and Bioremediation Potential of Byproducts from Hydrothermal Liquefaction of Food Wastes, Bioresour Technol Reports, 12: 100555 (2020).
[5] Cheng Y., Xue F., Yu S., Du S., Yang Y., Lovillo M.P., et al., "Subcritical Water Extraction of Natural Products", Mol 2021, Vol 26, Page 4004, 26: 4004 (2021).
[6] Jahanban-Esfahlan A., Dastmalchi S., and Davaran S., A Simple Improved Desolvation Method for the Rapid Preparation of Albumin Nanoparticles, Int. J. Biol. Macromol., 91: 703 (2016).
[7] Lee S.H., Heng D., Ng W.K., Chan H.-K., Tan R.B.H., Nano Spray Drying: A Novel Method for Preparing Protein Nanoparticles for Protein Therapy, Int. J. Pharm., 403: 192 (2011).
[9] Pu Y., Wang J.X., Wang D., Foster N.R., Chen J.F., Subcritical Water Processing for Nanopharmaceuticals, Chem. Eng. Process - Process Intensif, 140: 36 (2019).
[10] Machmudah S., Widiyastuti W., Wahyudiono W., Winardi S., Kanda H., Goto M., Hydrothermal Synthesis: Low−Temperature Subcritical Water for Ceria−Zirconia Mixed Oxides Preparation, Indones. J. Chem., 21: 1 (2021).
[11] Mohammadi H.S., Asl A.H., Khajenoori M., Solubility Measurement and Preparation of Nanoparticles of Ampicillin Using Subcritical Water Precipitation Method, Korean J. Chem. Eng., 2021: 1 (2021).
[12] Parmentier M., Gabriel C.M., Guo P., Isley N.A., Zhou J., Gallou F., Switching from Organic Solvents to Water at an Industrial Scale, Curr. Opin. Green Sustain. Chem., 7: 13 (2017).
[13] Cseri L., Razali M., Pogany P., Szekely G., Organic Solvents in Sustainable Synthesis and Engineering, Green Chem. An Incl. Approach, Elsevier Inc.,    : 513 (2018).
[14] Fattahi A., Karimi-Sabet J., Keshavarz A., Golzary A., Rafiee-Tehrani M., Dorkoosh F.A., Preparation and Characterization of Simvastatin Nanoparticles Using Rapid Expansion of Supercritical Solution (RESS) with Trifluoromethane, J. Supercrit Fluids, 107: 469 (2016).
[16] Pu Y., Li Y., Wang D., Foster N.R., Wang J.-X., Chen J.-F., A Green Route to Beclomethasone Dipropionate Danoparticles Via Solvent Anti-Solvent Precipitation by Using Subcritical Water as the Solvent, Powder Technol., 308: 200 (2017).
[17] Pu Y., Wen X., Li Y., Wang D., Foster N.R., Chen J.-F., Ultrafine Clarithromycin Nanoparticles Via Anti-Solvent Precipitation In Subcritical Water: Effect of Operating Parameters, Powder Technol., 305: 125 (2017).
[18] Abbasi Kajani A., Haghjooy Javanmard S., Asadnia M., Razmjou A., Recent Advances in Nanomaterials Development for Nanomedicine and Cancer, ACS Appl Bio Mater, 4: 5908 (2021).
[20] Mohtashamian S., Boddohi S., Hosseinkhani S., Preparation and Optimization of Self-Assembled Chondroitin Sulfate-Nisin Nanogel Based on Quality By Design Concept, Int. J. Biol. Macromol., 107: 2730 (2018).
[21] Gundupalli M.P., Tantayotai P., Panakkal E.J., Chuetor S., Kirdponpattara S., Thomas A.S.S., et al., Hydrothermal Pretreatment Optimization and Deep Eutectic Solvent Pretreatment of Lignocellulosic Biomass: an Integrated Approach, Bioresour Technol. Reports., 17: 100957 (2022).
[22] Bronze-Uhle E.S., Costa B.C., Ximenes V.F., and Lisboa-Filho P.N., Synthetic Nanoparticles of Bovine Serum Albumin with Entrapped Salicylic Acid, Nanotechnol Sc.i Appl., 10: 11 (2017).
[24] D’Addio S.M., Prud’homme R.K., Controlling Drug Nanoparticle Formation by Rapid Precipitation, Adv. Drug. Deliv. Rev., 63: 417 (2011).
[25] Tarhini M., Benlyamani I., Hamdani S., Agusti G., Fessi H., Greige-Gerges H., et al., Protein-Based Nanoparticle Preparation via Nanoprecipitation Method, Materials (Basel), 11: 394 (2018).
[26] Abdelmoez W., Yoshida H., Simulation of Fast Reactions in Batch Reactors Under Sub-Critical Water Condition, AIChE J., 52: 3600 (2006).
[28] Joye I.J., McClements D.J., Production of Nanoparticles by Anti-Solvent Precipitation for Use in Food Systems, Trends Food Sci. Technol., 34: 109 (2013).
[29] Langer K., Balthasar S., Vogel V., Dinauer N., von Briesen H., Schubert D., Optimization of the Preparation Process for Human Serum Albumin (HSA) Nanoparticles, Int. J. Pharm., 257: 169 (2003).
[30] Danaei M., Dehghankhold M., Ataei S., Hasanzadeh Davarani F., Javanmard R., Dokhani A., et al., Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems, Pharmaceutics, 10 (2018).
[31] Hu H., Yang H., Huang P., Cui D., Peng Y., Zhang J., et al., Unique Role of Ionic Liquid In Microwave-Assisted Synthesis of Monodisperse Magnetite Nanoparticles, Chem. Commun., 46: 3866 (2010).
[32] Huang P., Li Z., Hu H., Cui D., Synthesis and Characterization of Bovine Serum Albumin-Conjugated Copper Sulfide Nanocomposites, J. Nanomater, 2010: 1 (2010).
[33] Naveenraj S., Anandan S., Binding of Serum Albumins with Bioactive Substances – Nanoparticles to Drugs, J. Photochem. Photobiol. C Photochem. Rev., 14: 53 (2013).
[34] Patra S., Santhosh K., Pabbathi A., Samanta A., Diffusion of Organic Dyes in Bovine Serum Albumin Solution Studied by Fluorescence Correlation Spectroscopy, RSC Adv., 2: 6079 (2012).
[36] Galisteo-González F., Molina-Bolívar J.A., Systematic Study on the Preparation of BSA Nanoparticles, Colloids Surf. B Biointerfaces, 123: 286 (2014).
[37] Rahimnejad M., Najafpour G., Bakeri G., Investigation and Modeling Effective Parameters Influencing the Size of BSA Protein Nanoparticles as Colloidal Carrier, Colloids and Surfaces, 96 (2012).
[38] Santhi K., Dhanaraj S.A., Joseph V., Ponnusankar S., Suresh B., A Study on the Preparation and Anti-Tumor Efficacy of Bovine Serum Albumin Nanospheres Containing 5-Fluorouracil, Drug. Dev. Ind. Pharm., 28: 1171 (2002).
[39] Wang G., Siggers K., Zhang S., Jiang H., Xu Z., Zernicke R.F., et al., Preparation of BMP-2 Containing Bovine Serum Albumin (BSA) Nanoparticles Stabilized by Polymer Coating, Pharm. Res., 25: 2896 (2008).
[41] Jahanshahi M., Babaei Z., Protein Nanoparticle: A Unique System as Drug Delivery Vehicles, African J. Biotechnol., 7: 4926 (2008).
[42] Yeon Jun J., Hai Nguyen H., Paik S.-Y.-R., Sook Chun H., Kang B.-C., Ko S., Preparation of Size-Controlled Bovine Serum Albumin (BSA) Nanoparticles By A Modified Desolvation Method, Food Chem., 127: 1892 (2011).