Synthesis of Nano Particles of LTA Zeolite by Means of Microemulsion Technique

Document Type : Review Article


1 Faculty of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, I.R. IRAN

2 Department of Chemical and Biochemical Engineering, Faculty of Engineering, The University of Western Ontario (UWO), London, Ontario, CANADA


This mini review article, intends to provide the essential information about microemulsion technique as a reliable approach toward the synthesis of zeolitic nano crystallites. The strategy discussed here provides a unique, effective, and potentially general methodology to the preparation of uniform and high purity nano crystallites of template-free zeolitic materials including LTA, faujasite type and other zeolitic-like materials (i.e. zeotype materials). Microemulsion is a reliable approach for controlled synthesis of uniform nano sized zeolitic particulates. On the other hand, the microwave assisted microemulsion technique has the advantages of short reaction time, producing smaller and more uniform particles with a narrower size distribution and high purity, in comparing to the conventional heating approaches.


Main Subjects

[1] Tosheva L., Valtchev V.P., Nanozeolites: Synthesis, Crystallization Mechanism, and Applications, Chem. Mater., 17, p. 2495 (2005).
[2] Seifi L., Torabian A., Kazemian H., Bidhendi G.N., Azimi, A.A., Charkhi, A., Adsorption of Petroleum Monoaromatics from Aqueous Solutions Using Granulated Surface Modified Natural Nanozeolites: Systematic Study of Equilibrium Isotherms, Water Air Soil Pollution, 217(1-4), p. 611 (2011).
[3]Torkaman  R.,  Soltanieh  M.,  Kazemian  H., Optimization of Parameters for the Synthesis of MFI Nanoparticles by Taguchi Robust Design Method, Chem. Eng. Technol., 33(6), p. 902 (2010).
[4] Kazemian H., Modarress H., Kazemi M., Farhadi F., Synthesis of Submicron Zeolite LTA Particles from Natural Clinoptilolite and Industrial Grade Chemicals Using One Stage Pocedure, Powder Technology, 196, p. 22 (2009).
[5] Kazemian H., Naghdali Z, Ghaffari Kashani T., Farhadi F., Conversion of High Silicon Fly Ash to NaP1 Zeolite: Alkaline Fusion Followed by Hydrothermal Crystallization, Advanced Powder Technology, 21, p. 279 (2010).
[6] Matin K.T., Bastani D., Kazemian H., Applying the Taguchi Method to Develop an Optimized Synthesis Procedure for Nanocrystals of T-Type Zeolite, Chem. Eng. Technol., 32(7), p. 1042 (2009).
[7] Charkhi A.,  Kazemian H.,  Kazemeini M., Experimental Design Optimized Ball Milling of Natural Clinoptilolite Zeolite for Production of Nano Powders, Powder Technology, 203, p. 389 (2010).
[8] DavisM.E., Ordered Porous Materials for Emerging Applications , Nature, 417(6891), p. 813 (2002).
[9] Liu Y., Sun M., Lew C.M., Wang J., Yan Y., MEL-Type Pure-Silica Zeolite Nanocrystals Prepared by an Evaporation-Assisted Two-Stage Synthesis Method as Ultra-Low-k Materials, Advanced Functional Materials , 18(12), p. 1732 (2008).
[10] Wang H.T., Wang Z.B., Huang L.M., Mitra A., Yan Y.S., Surface Patterned Porous Films by Convection-Assisted Dynamic Self-Assembly of Zeolite Nanoparticles, Langmuir, 17(9), p. 2572 (2001).
[11] Shan W., Zhang Y.H., Yang W.L., Ke C., Gao Z., Ye Y.F., Tang Y., Electrophoretic Deposition of Nanosized Zeolites in Non-Aqueous Medium and Its Application in Fabricating thin Zeolite Membranes, Microporous Mesoporous Mater, 69(1-2), p. 35 (2004).
[12] Wang Z.B., Wang H.T., Mitra A., Huang L.M., Yan Y.S., Adv. Mater. Pure-Silica Zeolite Low-k Dielectric Thin Films, 13(10), p. 746 (2001).
[13] Li S.A., Li Z.J., Yan Y.S., Ultra-Low-k Pure-Silica Zeolite MFI Films Using Cyclodextrin as Porogen, Adv. Mater., 15(18), p. 1528 (2003).
[14] Wang H.T., Huang L.M., Holmberg B.A., Yan Y.S., Nanostructured Zeolite 4A Molecular Sieving air Separation Membranes, Chem. Commun., 16, p. 1708 (2002).
[15] Wang  H.T.,  Holmberg  B.A.,  Yan  Y.S., Homogeneous Polymer-Zeolite Nanocomposite Membranes by Incorporating Dispersible Template-Removed Zeolite Nanocrystals, J. Mater. Chem., 12 (12), p. 3640 (2002).
[16] Kirschhock C.E.A., Buschmann V., Kremer et al., Zeosil Nanoslabs: Building Blocks in nPr4N+-Mediated Synthesis of MFI Zeolite, Angew. Chem., Int. Ed., 40(14), p. 2637 (2001).
[17] Mintova S., OlsonN.H., Valtchev V., Bein T., Mechanism of Zeolite a Nanocrystal Growth from Colloids at Room Temperature, Science, 283(5404), p. 958 (1999).
[18] Schoeman B.J., Sterte J., Otterstedt J.E., Analysis of the Crystal Growth Mechanism of TPA-Silicalite-1, Zeolites, 14(2), p. 110 (1994).
[19] Zimmerman C.M., Singh A., Koros W.J., Tailoring Mixed Matrix Composite Membranes for Gas Separations, J. Membr. Sci., 137(1-2), p. 145 (1997).
[20] Dutta P.K., Robins D., Synthesis of Zeolite A from Reactants Enclosed in Reverse Micelles, Langmuir, 7(6), p. 1048 (1991).
[21] Brar T., France P., Smirniotis P.G., Heterogeneous Versus Homogeneous Nucleation and Growth of Zeolite A, J. Phys. Chem. B, 105(23), p. 5383 (2001).
[22] Zhan B.Z., White M.A., Lumsden, M.; Mueller-Neuhaus J., Robertson K.N., Cameron T.S., Gharghouri M., Control of Particle Size and Surface Properties of Crystals of NaX Zeolite, Chem. Mater., 14(9), p. 3636 (2002).
[23] Madsen C.,  Jacobsen C.J.H.,  Nanosized  Zeolite Crystals-Convenient Control of Crystal Size Distribution by Confined Space Synthesis, Chem. Commun., (8), p. 673 (1999).
[24] Wang, B.,  Ma H.Z.,  Shi Q.Z.,  Synthesis  of Nanosized NaY Zeolite by Confined Space Method, Chin. Chem. Lett., 13(4), p. 385 (2002).
[25] (a) Breck D.W.,  “Zeolites  and  Molecular  Sieves System,” Wiley,New York, (1974).
        (b) Barrer R.M., “Hydrothermal Chemistry in Zeolites,” Academic Press,London, (1982).
[26] Kuperman A., Nadimi S., Oliver S., Ozin G.A., Garces J.M., Olken M.M., Non-Aqueous Synthesis of Giant Crystals of Zeolites and Molecular Sieves, Nature, 365, p. 239 (1993).
[27] Bibby D.M., Dale M.P., Synthesis of Silica-Sodalite from Non-Aqueous Systems, Nature, 317, p. 157 (1985).
[28] Yang  S.,  Evmirides  N.P.,  Synthesis  and Characterization of an Offretite/Erionite Type Zeolite, Microporous Materials, 6(1), p. 19 (1996).
[29] Liveri  V.,  Rossi  M.,  D’Arrigo  G.,  Manno  D., Micocci G., Synthesis and Characterization of ZnS Nanoparticles in Water/AOT/n- Heptane Microemulsions, Appl.Phys. A, 69(4), p. 369 (1999).
[30] Kim D., Oh S., Lee J., Preparation of Ultrafine Monodispersed Indium-Tin Oxide Particles in AOT-Based Reverse Microemulsions as Nanoreactors,  Langmuir, 15(5), p. 1599 (1999).
[31] Kumar P., Mittal K.L., "Handbook of Microemulsion Science and Technology", Marcel Dekker: New York, (1999).
[32] Das S.K., Dutta P.K., Synthesis and Characterization of a Ruthenium Oxide-Zeolite Y Catalyst for Photochemical Oxidation of Water to Dioxygen, Micropor. Mesopor. Mater., 22(1-3), p. 475 (1998).
[33] Dutta P.K., Jakupca M., Reddy K.S.N., Salvati L., Controlled Growth of Microporous Crystals Nucleated in Reverse Micelles, Nature, 374, p. 44 (1995).
[34] Dutta P.K., Robins D., Synthesis of Zeolite A from Reactants Enclosed in Reverse Micelles, Langmuir, 7, p. 1048 (1991).
[35] Reddy K.S.N., Salvati L.M., Dutta P.K., Abel P.B., Suh K.I., Ansari R.R., Reverse Micelle Based Growth of Zincophosphate Sodalite: Examination of Crystal Growth, J. Phys. Chem., 100, p. 9870 (1996).
[36] Singh R.,  Doolittle J.,  George M.A.,  Dutta P.K., Novel Surface Structure of Microporous Faujasitic-Like Zincophosphate Crystals Grown via Reverse Micelles , Langmuir, 18, p. 8193 (2002).
[37] Singh R., Dutta P.K., Crystal Growth of Faujasitic Microporous Zincophosphate Crystals Using Reverse Micelles as Reactants, Langmuir, 16, p. 4148 (2000).
[38] Yates M.Z., Ott K.C., Birnbaum E.R., Mc Cleskey T.M., Hydrothermal Synthesis of Molecular Sieve Fibers: Using Microemulsions to Control Crystal Morphology, Angew. Chem. Int. Ed., 41, p. 476 (2002).
[39] Lin J.-C., Dipre J.T., Yates M.Z., Microemulsion-Directed Synthesis of Molecular Sieve Fibers, Chem. Mater., 15, p. 2764 (2003).
[40] Lin J.-C., Dipre J.T., Yates M.Z., Novel Aluminum Phosphate-5 Crystal Morphologies Synthesized by Microwave Heating of a Water-in-Oil Microemulsion, Langmuir, 20, p. 1039 (2004).
[41] Lee S., Shantz D.F., Modifying  Zeolite  Particle Morphology and Size Using Water/Oil/Surfactant Mixtures as Confined Domains for Zeolite Growth, Chem. Commun., DOI: 10.1039/b315646, p. 680 (2004).
[42] Lee S., Shantz D.F.,  Zeolite  Growth  in  Nonionic Microemulsions: Synthesis of Hierarchically Structured Zeolite Particles, Chem. Mater., 17, p. 409 (2005).
[43] Manna A., Kulkarni B.D., Ahedi R.K., Bhaumik A., Kotasthane A.N., Synthesis of Silicalite-1 in Bicontinuous Microemulsion Containing AOT, J. Colloid Inter. Sci., 213, p. 405 (1999).
[44] Strey  R.,  Kahlweit  M.,  Microemulsions.  A Qualitative Thermodynamic Approach, Progress in Colloid and Polymer Science, 81, p. 215 (1990).
[45] Kahlweit M., Strey R., Busse G., Microemulsions: A Qualitative Thermodynamic Approach, J. Phys. Chem., 94, p. 3881 (1990).
[46] Zhang J. et al., "Microemulsion-Directed Synthesis of Zeolite A Nano-Crystals. in: From Zeolite to Porous MOF Materials- the 40th Anniversary of International Zeolite Conference", Xu R., Gao Z.,
Chen J., Yan W. ( Editors)
[47] Shane Carr C.,  Shantz D.F.,  Non-ionic-Microemulsion Mediated Growth of Zeolite A, Micropor. Mesopor. Mater.,  85, p. 284 (2005).
[48] Zhan B., White M.A., Robertson K.N.,  Cameron T.S., Gharghouri M., A Novel, Organic-Additive-Free Synthesis of Nanometer-Sized NaX Crystals, Chem. Comm., p. 1176 (2001).
[49] Chen Z., Li S., Yan Y., Synthesis of Template-Free Zeolite Nanocrystals by Reverse Microemulsion-Microwave Method, Chem. Mater., 17, 2262-2266 (2005).