Removal of Chelated Copper by TiO2 Photocatalysis: Synergetic Mechanism Between Cu (II) and Organic Ligands

Document Type : Research Article


1 Faculty of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China

2 Lin, Longli *+; Liu, Guoguang; Lv, Wenying; Qintie Lin, Kun Yao Faculty of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China

3 College of Chemistry and Chemical Engineering, Bijie University, Guizhou 551700, China


UV/TiO2 photocatalysis of chelated copper in aqueous solutions has been performed starting from Cu(II)-tartaric acid, Cu(II)-citric acid, Cu(II)-EDTA and Cu(II)-DTPA,in the presence of oxygen and at acidic pH. The photocatalytic reaction obeys first-order kinetic equation. The influence of Cu(II) on photocatalytic oxidation of organic ligands and how the various organics will affect the treatment of Cu(II) were described. A significant synergistic effect was observed between the reduction of Cu(II) and oxidation of organic ligands. The results prove that TiO2 photocatalysis is an effective approach for removing chelated copper from wastewater. 


Main Subjects

[1] Litter M. I., Heterogeneous Photocatalysis Transition Metal Ions in Photocatalytic Systems, Appl. Catal. B–Environ., 23, p. 89 (1999).
[2] Kajitvichyanukul P., Chenthamarakshan C.R., Rajeshwar K., Qasim S. R., Photocatalytic Reactivity of Thallium(I) Species in Aqueous Suspensions of Titania, J.Electroanal.Chem., 519, p. 25 (2002).
[3] Lozano A., Garcia J., Domenech X., Casado J., Heterogeneous Photocatalytic Oxidation of Manganese(II) over TiO2, J. photoch photobio A., 69, p. 237 (1992).
[4] Ming Y., Chenthamarakshan C. R., Rajeshwar K., Radical-Mediated Photoreduction of Manganese(II) Species in UV-irradiated Titania Suspensions, J. photoch photobio A., 147, p. 199 (2002).
[5] Tzou Y. M., Wang S. L., Wang M. K., Fluorescent Light Induced Cr(VI) Reduction by Citrate in the Presence of TiO2 and Ferric Ions, Colloids and Surfaces A: Physicochem. Eng. Aspects., 253, p. 15 (2005).
[6] Khalil L. B., Rophael M. W., Mourad W. E., The Removal of the Toxic Hg(II) Salts from Water by Photocatalysis, Appl. Catal. B–Environ., 36, p. 125 (2002).
[7] Tennakone K., Ketipearachchi U. S., Photocatalytic Method for Removal of Mercury from Contaminated Water, Appl. Catal. B–Environ., 5, p. 343 (1995).
[8] Murruni L., Conde F., Leyva G., Litter M. I., Photocatalytic Reduction of Pb(II) over TiO2: New Insights on the Effect of Different Electron Donors, Appl. Catal. B–Environ., 84, p. 563 (2008).
[9] Kabra K., Chaudhary R., Sawhney R. L., Solar Photocatalytic Removal of Cu (II), Ni(II), Zn(II), and Pb(II): Speciation Modeling of Metal-citric Acid Complexes, J. Hazard. Mater., 155, p. 424 (2008).
[10] Nguyen V. N. H., Amal R., Beydoun D., Effect of Formate and Methanol on Photoreduction/Removal of Toxic Cadmium Ions Using TiO2 Semiconductor as Photocatalyst, Chem. Eng. Sci., 58, p. 4429 (2003).
[11] Chenthamarakshan C. R., Yang H., Ming Y., Rajeshwar K., Photocatalytic Reactivity of Zinc and Cadmium Ions in UV-irradiated Titania Suspensions, J.Electroanal.Chem., 494, p. 79 (2000).
[12] Yeber M. C., Soto C., Riveros R., Navarrete J., Vidal G., Optimization by Factorial Design of Copper(II) and Toxicity Removal Using a Photocatalytic Process with TiO2 as Semiconductor, Chem. Eng. J., 62, p. 1 (2009).
[13] Yang J. K., Lee S. M., EDTA Effect on the Removal of Cu(II) onto TiO2, J. Colloid Interface Sci., 282,  p. 5 (2005).
[14] Forouzan F., Richards T. C., Bard A. J., Photoinduced Reaction at TiO2 Particles: Photodeposition from Ni(II) Solutions with Oxalate, Chem. phys., 100, p. 18123 (1996).
[15] Salah B., Robert D., Chaib M., Use of Oxalate Sacrificial Compounds to Improve the Photocatalytic Performance of Titanium Dioxide, Appl. Catal.B–Environ., 86, p. 93 (2009).
[17] Beydoun D., Tse H., Amala R., Gary L., McEvoy S., Effect of Copper on the Photocatalytic Degradation of Sucrose, J. Mol. Catal  A- Chem., 177, p. 265 (2002).
[18] Wang N., Xu Y. Z., Zhu L. H., Shen X. T., Tang H. Q., Reconsideration to the Deactivation of TiO2  Catalyst During Simultaneous Photocatalytic Reduction of Cr(VI) and Oxidation of Salicylic Acid,  J. Photoch. Photobio. A: Chemistry, 201, p. 121 (2009).
[19] Han W. Y., Zhu W. P., Zhang P. Y., Zhang Y., L. L. S., Photocatalytic Degradation of Phenols in     Aqueous Solution under Irradiation of 254 and 185 nm UV Light, Catal today, 90, p. 319 (2004).
[20] Dhananjay S., Bhatkhande, Sanjay P., Kamble, Sudhir B., Sawant, Vishwas G. P., Photocatalytic and Photochemical Degradation of Nitrobenzene Using Artificial Ultraviolet Light, Chem. Eng. J., 102, p. 283 (2004).
[21] Park E. H., Jung J. H., Chung H. H., Simultaneous Oxidation of EDTA and Reduction of Metal Ions in Mixed Cu(II)/Fe(Ⅲ)-EDTA System by TiO2 Photocatalysis, Chemosphere, 64, p. 432 (2006).
[22] Hu C.,  Yu J. C., Hao Z., Wong P. K., Effects of Acidity and Inorganic Ions on the Photocatalytic Degradation of Different Azo Dyes, Appl. Catal.   B–Environ., 46, p. 35 (2003).
[23] State Environmental Protection Administration, “Water and Wastewater Monitoring and Analysis Methods (Fourth Edition)”, China Environmental Science Press, Beijing, p. 324, (2002).
[24] Liu G. G., Zhang X. Z., Xu Y. J., Niu X. S., Zheng L. Q., Ding X. J., Effect of ZnFe2O4 Doping on the Photocatalytic Activity of TiO2, Chemosphere, 55, p. 1287 (2006).
[25] Fang J. L., “Theory and Application of Coordination Compounds in Electroplating”, Chemical Industry Press, Beijing, p. 671 (2007).
[26] Rajeshwar K., Osugi M. E., Chanmanee W., Chenthamarakshan C. R., Zanoni M. V. B., Kajitvichyanukul P., Krishnan A. R., Heterogeneous Photocatalytic Treatment of Organic Dyes in Air and Aqueous Media, J. Photoch Photobio C, 9, p. 171 (2008).
[27] Umar I. G., Abdullah A. H., Heterogeneous Photocatalytic Degradation of Organic Contaminants Overtitanium Dioxide: A Review of Fundamentals, Progress and Problems, J. Photoch. Photobio. C, 9, p. 1 (2008).
[28] Kanki T., Yoneda H. S., Sano N., Toyoda A. S., Nagai C., Photocatalytic Reduction and Deposition of Metallic Ions in Aqueous Phase, Chem. Eng. J., 97, p. 77 (2004).