Synthesis and Antioxidant Activities of [5-fluoro N, N'-bis (salicylidene) ethylenediamine] and [3, 5-fluoro N, N'-bis (salicylidene) ethylenediamine] Manganese (III) Complexes

Document Type : Research Article


Institute of Biochemistry and Biophysics, University of Tehran, Tehran, I.R. IRAN


Antioxidants act as free radical scavengers in the oxidation processes. Thus, they will certainly play diverse roles in the biological systems and the therapy of a wide variety of diseases. Regarding this fact, in the present study, we synthesized two new salen ligand compounds by the condensation of ethylendiamine and salicylaldehyde derivatives in excellent yields.The structures of these ligands were confirmed by IR, 1H NMR and mass spectroscopy techniques. Furthermore, we evaluated the relative dismutase, catalase and peroxidase activities of the newly synthesized complexes named as EUKs 131, 132, 141 and 142 relative to EUKs 108 and 8, as the reference compounds. The results demonstrated that all Mn-salen complexes (EUKs) illustrated significant dismutase, catalase and peroxidase activities. EUKs 131 and 8 showed the most catalase and peroxidase activities while their dismutase activities were almost the same as the other compounds. In addition, our data indicated that the biological activities of the EUKs are modulated by manganese element as well as the types and the positions of substituents on the ligand.


Main Subjects

[1] Ames B.N., Shigenega M.K., Hagen T.M., Oxidants and the Degenerative Diseases of Ageing, Proc Nati Acad Sci, 90, p. 7915 (1993).
[2] Mandal S., Yadav S., Yadav S., Nema R. K., Antioxidants, Journal of Chemical and Pharmaceutical Research, 1, p. 102 (2009).
[3] Badarinath A.V., Rao K.M., Madhusudhana C.C., Ramkanth S., Rajan T.V.S, Gnanaprakash K., A Review on In-vitro Antioxidant Methods: Comparisons, Correlations and Considerations, International Journal of PharmTech Research, 2,    p. 1276 (2010).
[4] Ardestani A., Yazdanparast R., Antioxidant and Free Radical Scavenging Potential of Achillea Santolina Extract, Food Chem., 104, p. 21 (2007).
[5] Mammadov R., Makasçı - Afacan A., Uysal - Demir D.; Görk, Ç., Determination of Antioxidant Activities of Different Urginea Maritima (L.) Baker Plant Extracts, Iran. J. Chem. Chem. Eng., 29(3), p. 47 (2010).
[6] Riley D.P., Functional Mimics of Superoxide Dismutase Enzymes as Therapeutic Agents, Chem. Rev., 99, p. 2573 (1999).
[7] Autzen S., Korth H.G., Boese R., Groot H., Sustmann R., Studies of Pyridinyl-containing 14-membered Macrocyclic Copper (II) Complexes, Eur. J. Inorg. Chem., 7, p. 1401 (2003).
[8] Stanely M.P.P., Menon V.P., Antioxidant Activity of Tinospora Cordifolia Roots in Experimental Diabetes, J. Ethnopharmacol., 65, p. 277 (1999).
[9] Cheeseman K.H., Slater T.F., Free Radicals in Medicine, British Med. Bull., 49, p. 479 (1993).
[10] Blokhina O., Virolainen E., Fagerstedt K.V., Antioxidants, Oxidative Damage and Oxygen Deprivation Stress,  Annals of Botany, 91, p. 179, (2003).
[11] Bjelakovic G., Nikolova D., Gluud L.L., Simonetti RG, Gluud C. Antioxidant Supplements for     Prevention of Mortality in Healthy Participants and Patients with Various Diseases. Cochrane Database of Systematic Reviews, CD 007176 (2008).
[12] Jung, C., Rong, Y., Doctrow, S., Baudry, M., Malfroy, B., Xu, Z., Synthetic Superoxide Dismutase/Catalase Mimetics Reduce Oxidative Stress and Prolong Survival in a Mouse Amyotrophic Lateral Sclerosis Model,  Neurosci. Lett., 304, p. 157 (2001).
[13] Samai, M., Sharpe, M. A.. Gard, P. R., Chatterjee, P. K., Comparison of the Effects of the Superoxide Dismutase Mimetics EUK-134 and Tempol on Paraquat-induced Nephrotoxicity, Free Radical Biol. Med., 43, p. 528 (2007).
[14] Sharpe M.A., Ollosson R., Stewart V.C., Clark J.B., Oxidation of Nitric Oxide by Oxomanganese–Salen Complexes: A New Mechanism for Cellular Protection by Superoxide Dismutase/Catalase Mimetics, Biochem. J., 366, p. 97 (2002).
[15] Gutteridge J. M. C., Halliwell B., Free Radicals and Antioxidants in the Year 2000. A Historical Look to the Future, Ann. N. Y. Acad. Sci., 899, p. 136 (2000).
[16] Doctrow S.R., Huffman K., Marcus C.B., Tocco G., Malfroy E., Adinolfi C.A., Kruk H., Baker K., Lazarowych N., Mascarenhas J., Malfroy B., Salen-Manganese Complexes as Catalytic Scavengers of Hydrogen Peroxide and Cytoprotective Agents: Structure-Activity Relationship Studies, J. Med. Chem., 45, p. 4549 (2002).
[17] Lanza V., Vecchio G., New Conjugates of Superoxide Dismutase/Catalase Mimetics with Cyclodestrins, Journal of Inorganic Biochemistry, 103, p. 381 (2009).
[18] Park W., Lim D., Effect of the oligo(ethylene glycol) Group on the Antioxidant Activity of Manganese Salen Complexes, Bioorganic & Medicinal Chemistry Letters, 19, p. 614 (2009).
[19] Giblin G. M., Box P. C., Campbell I. B., Hancock A. P., Roomans S., Mills G. I., Molloy C., Tranter G. E., Walker A. L., Doctrow S. R., Huffman K., Malfroy B., 6, 6'-Bis(2-hydroxyphenyl)-2, 2'-bipyridine Manganese(III) Complexes: A Novel Series of Superoxide Dismutase and Catalase Mimetics, Bioorganic & Medicinal Chemistry Letters, 11, p. 1367 (2001).
[20] Melov, S., Doctrow, S. R., Schneider, J. A., Haberson, J., Patel, M., Coskun, P. E., Huffman, K., Wallace, D. C. & Malfroy, B., Lifespan Extension and Rescue of Spongiform Encephalopathy in Superoxide Dismutase 2 Nullizygous Mice Treated with Superoxide Dismutase-Catalase Mimetics. J. Neurosci., 21, p. 8348 (2001).
[21] Rong, Y., Doctrow, S. R., Tocco, G. & Baudry, M. EUK-134, a Synthetic Superoxide Dismutase and Catalase Mimetic, Prevents Oxidative Stress and Attenuates Kainate-Induced Neuropathology, Proc. Natl. Acad. Sci. USA, p. 9897 (1999).
[22] Baudry M., Etienne S., Bruce A., Palucki M., Jacobsen E., Malfroy B., Salen-Manganese Complexes are Superoxide Dismutase-Mimics. Biochem. Biophys. Res. Commun., 96, p. 964 (1993).
[23] Venkataramanan N.S., Kuppuraj G., Rajagopal S. Metal–Salen Complexes as Efficient Catalysts for the Oxygenation of Heteroatom Containing Organic Compounds-Synthetic and Mechanistic Aspects., Coord Chem Rev., 249, p. 1249 (2005).
[24] Patel M., Day B. J., Metalloporphyrin Class of Therapeutic Catalytic Antioxidants,Trends Pharmacol Sci., 20, p. 359 (1999).
[25] Boucher, L. J. Manganese Schiff’s base complexes II: Synthesis and Spectroscopy of Chloro- Complexes of Some Derivatives of (salicylaldehydeethylenediimato) Manganese (III). J. Inorg. Nucl. Chem., 36, p. 531 (1974).
[26] Kakkar P., Das B., Viswanathan P.N., A Modified Spectrophotometric Assay of Superoxide Dismutase, Ind. J. Biochem. Biophys, 21, p. 130 (1984).
[27] Aebi H., Catalase in Vitro, Methods Enzymol, 105, p. 121 (1984).
[28] Childs R. E., Bardsley W. G., The Steady-State Kinetics of Peroxidase with 2, 2’-Azino-di-   (3-ethylbenzthiazoline-6-sulphonic acid) as Chromogen, Biochem. J., 145, p. 93 (1975).
[29] Gonzalez P. K., Zhuang J., Doctrow S. R., Malfroy B., Benson P. F., Menconi M. J., Fink M. P., EUK-8,    A Synthetic Superoxide Dismutase and Catalase Mimetic, Ameliorates Acute Lung Injury in Endotoxemic Swine. J. Pharmacol. Exp. Ther., 275, p. 798 (1995).
[30] Doctrow S. R., Huffman K., Marcus C. B., Musleh W., Bruce A., Baudry M., Malfroy B., Salen-Manganese Complexes: Combined Superoxide Dismutase/Catalase Mimics with Broad Pharmacological Efficacy, Adv Pharmacol., 38, p. 247 (1997).
[31] Graham Solomons T. W., “Organic Chemistry”, sixth edition, John Wiley and Sons, PP. 675-676; 691-693 (1996).