Adsorption of Mercury by Pterocarpus Anglolensis: Study on Adsorption Isotherms and Kinetics

Document Type : Research Article


1 Department of Applied Chemistry, National University of Science and Technology, Bulawayo, ZIMBABWE

2 Department of Environmental Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Florida, SOUTH AFRICA

3 Department of Chemical Engineering, Vaal University of Technology, Private Bag X021, Vanderbijlpark, 1911, Andries Potgieter Blvd, SOUTH AFRICA


The efficiency of Pterocarpus Anglolensis sawdust, an abundantly available waste product of the timber industry, capacity as an adsorbent for mercury was investigated. A series of batch experiments was carried out with experimental conditions of metal concentration, adsorbent concentration, pH, and contact time being changed. The concentration of the metal ion was deduced using spectrophotometric means. The adsorption efficiency was found to be pH-dependent with pH 4 being the optimum. 90 minutes was found to be the equilibrium time with particle size range 90-124 μm being the most efficient. Maximum adsorption of mercury was evaluated at 80.33 %. The experimental data was best modeled by the Freundlich isotherm and Pseudo second-order kinetic models. The calculated adsorption parameters are Kf = 0.0002 L/mg, bF = 3.0 and k2 = 0.00016 g/μg.min.


Main Subjects

[1] Jin-Gang Y., Bao-Yu Y., Xiong-Wei W., Qi L., Fei-Peng J., Xin-Yu J., Xiao-Qing C., Removal of Mercury by Adsorption: A Review, Environ. Sci. Pollut. Res., 23(6): 5056-5076 (2015).
[2] Nour A., Ghadir E., Removal of Lead from Aqueous Solution Using Low Cost Abundantly Available Adsorbents, Int. J. Environ. Sci. Tech., 4(1): 67-73 (2007).
[3] Diaz E., “Mercury Pollution at Gold Sites in the Amazon Environment”, University of Idaho, Idaho (2000).
[4] Carvalho F.P., Mining Industry and Sustainable Development: Time for Change, Food and Energy Security, 6(2): 61-77 (2007).
[5] Morita M., Yoshinaga J., Edmonds J.S., The Determination of Mercury Species in Environmental and Biological Samples, Pure Appl. Chem., 70(8): 1585-1615 (1998).
[6] van Straaten P., Mercury Contamination Associated with Small-Scale Gold Mining in Tanzania and Zimbabwe, Sci. Total Environ., 259(1): 105-113 (2000).
[7] Miretzky P., Cirelli A.F., Hg(II) Removal from Water by Chitosan and Chitosan Derivatives: A Review, J. Hazard. Mater., 167(3): 10-23 (2009).
[8] Lyons W.B., Wayne D.M., Warwick J.J., Doyle G.A., The Hg Geochemistry of a Geothermal Stream, Steamboat Creek, Nevada: Natural vs Anthropogenic Influences, Environ. Geol., 34(1): 143–150 (1998).
[9] Mason R.P., Reinfelder J.R., Morel F.M.M., Uptake, Toxicity, and Trophic Transfer of Mercury in a Coastal Diatom, Environ. Sci. Technol., 30(6): 1835–1845 (1996).
[10] Chen Z., Geng Z., Zhang Z., Ren L., Tao T., Yang R., Guo Z., Synthesis of Magnetic Fe3O4@C Nanoparticles Modified with –SO3H and –COOH Groups for Fast Removal of Pb2+, Hg2+, and Cd2+ Ions, Eur. J. Inorg. Chem., 20(1): 3172–3177 (2016).
[11] Sibanda S., Nyoni B., Mpofu C., Naidoo B., Chiririwa H., Studying the Effectiveness of Treating Waste Water Using the Electro Coagulation Process at Sewage Treatment Plants, Int. J. Appl. Chem., 13(4): 825-843 (2017).
[12] (a) Chiarle S., Ratto M., Rovatti M., Mercury Removal from Water by Ion Exchange Resins Adsorption, Water Res., 34(11): 2971–2978 (2000).  
        (b) Lone S., Yoon D.H., Lee H., Cheong I.W., Gelatin-Chitosan Hydrogel Particles for Efficient Removal of Hg(II) from Wastewater, Environ. Sci. Water Res. Technol., 5(1): 83-90 (2019).
[13] Han D.S., Orillano M., Khodary A., Duan Y., Batchelor B., Abdel-Wahab A., Reactive Iron Sulfide (FeS)-supported Ultrafiltration for Removal of Mercury (Hg(II)) from Water, Water Res., 53(1): 310–321 (2014).
[14] Antochshuk V., Jaroniec M., 1-Allyl-3-Propylthiourea Modified Mesoporous Silica for Mercury Removal, Chem. Commun., 3(2002): 258-259 (2002).
[15] Mirzababaei S.N., Taghizadeh M., Alizadeh E., Synthesis of Surfactant-Modified ZSM-5 Nanozeolite for the removal of Nickel (II) from Aqueous Solution, Desalination Water Treatment, 1(2015): 1-12 (2015).
[16] Matlock M.M., Howerton B.S., Atwood D.A., Irreversible Precipitation of Mercury and Lead, J. Hazard. Mater., 1(2001): 73-82 (2001).
[17] Chiarle S., Ratto M., Rovatti M., Mercury Removal from Water by Ion Exchange Resins Adsorption, Water Res., 34(11): 2971-2978 (2000).
[18] Zombrano J.B., Laborie S., Viers P.H., Rakib M., Durand G., Mercury Removal from Aqueous Solutions by Complexation-Ultrafiltration, Desalination, 144(2002): 201-206 (2002).
[19] Mengdan X., Zhixin C., Yao L., Chuanhua L., Nasir M., Ahmad W., Cheema A., Shenmin Z., Removal of Hg(II) in Aqueous Solutions Through Physical and Chemical Adsorption Principles, RSC Adv., 9(2019): 20941-20953 (2019).
[20] Xu H., Xie J., Ma Y., Qu Z., Zhao S., Chen W., Huang W., Yan N., The Cooperation of Fe-Sn in a MnOx Complex Sorbent Used for Capturing Elementary Mercury, Fuel, 140(2015): 803–809 (2015).
[22] Matthews T., Majoni S., Nyoni B., Naidoo B., Chiririwa H., Adsorption of Lead and Copper by a Carbon Black and Sodium Bentonite Composite Material: Study on Adsorption Isotherms and Kinetics, Iran. J. Chem. Chem. Eng. (IJCCE), 38(1): 101-109 (2019).
[24] Gupta V.K., Carrott P.J.M., Carrott M.M.L.R., Low-Cost Adsorbents: Growing Approach To Wastewater Treatment –A Review, Crit. Rev. Environ. Sci. Technol., 39(10): 783-842 (2009).
[26] Nyoni B., Hlabano-Moyo B.M., Chimwe C., Using a Simulation Software to Perform Energy and Exergy Analyses of The Sulfur-Iodine Thermochemical Process, Int. J. Model. Simul. Sci. Comput., 8(1): 1-14 (2017).
[27] Osmari T.A., Gallon R., Schwaab M., Coutinho E.B., Severo Jr J.B., Pinto J.C., Statistical Analysis of Linear and Non-Linear Regression for the Estimation of Adsorption Isotherm Parameters, Adsor. Sci. Technol., 31(5): 433-458 (2013).
[28] Markovic D.D., Lekic B.M., Ognjanovic V.N.R., Onjia A.E., Rajakovic L.V., A New Approach in Regression Analysis for Modelling Adsorption Isotherms, Sci. World J., 2014(1): 1-17 (2014).
[29] Yean S., Cong L., Yavuz C.T., Mayo J.T., Yu W.W., Kan A.T., Colvin V.L., Tomson M.B., Effect of Magnetite Particle Size on Adsorption and Desorption of Arsenite and Arsenate, J. Mater. Resour., 20(12): 3255-3264 (2005).
[32] Horsfall Jr M., Abia A.A., Spiff A.I., Removal of Cu (II) and Zn (II) Ions from Wastewater by Cassava (Manihot esculenta Cranz) Waste Biomass, Afr. J. Biotechnol., 2(10): 360-364 (2003).
[33] Karabult S., Karabakan A., Denezli A., Yurum Y., Batch Removal of Copper (II) and Zinc from Aqueous Solution with Low Rank Turkish Coals, Separat. Purif. Technol., 18(2000): 177-184 (2000).
[34] Williams C.J., Aderhold D., Edyvean R.G.J., Comparison Between Adsorbents for the Removal of Metal Ions from Aqueous Solution, Water Resour., 32(1998): 216-224 (1998).
[35] Adouby K., Akissi K., Eboua L.C., Wandan N., Yao B., Removal of Heavy Metal Ions (Pb2+, Cu2+) in Aqueous Solutions by Pterygota Macrocarpa Sawdust, J. Appl. Sci., 7(14): 1864-1872 (2007).
[36] Onwu F.K., Sonde C.U., Igwe J.D., Adsorption of Hg2+ and Ni2+ from Aqueous Solutions Using Unmodified and Carboxymethylated Granular Activated Carbon (GAC), Am. J. Phys. Chem., 3(6): 89-95 (2014).
[37] Abdelhamid B., Ourari A., Ouali M.S., Copper (II) Ions Removal from Aqueous Solution Using Bentonite Treated with Ammonium Chloride, Am. J. Phys. Chem., 1(2012): 1-10 (2012).
[38] Johnson R.D., Arnold F.H., The Temkin Isotherm Describes Heterogeneous Protein Adsorption, Biochim. Biophys. Acta., 1247(1995): 293-297 (1995).
[40] Richardson J.F., Harker J.H., Backhurst J.R., (eds.), “Coulson and Richardson’s Chemical Engineering, Particle Technology and Separation Processes”,  Vol. 2, 5th ed., Butterworth-Heinemann, Oxford, UK (2002).
[41] Jeppu G.P., Clement T.P., A Modified Langmuir-Freundlich Isotherm Model for Simulating pH-Dependent Adsorption Effects, J. Contaminant Hydrol., 130(1): 46-53 (2012).
[42] Christman K., “Introduction to Surface Physical Chemistry”, Darmstadt, Steinkopf-Verlag (1991).
[43] Christmann K., “Thermodynamics and Kinetics Of Adsorption”, University of Berlin (2012).
[44] Singha B., Das S.K., Adsorptive Removal of Cu(II) from aqueous Solution and Industrial Effluent Using Natural/Agricultural Wastes, Colloids Surf. B: Biointerfaces, 107(1): 97–106 (2013).  
[45] Azizian S., Kinetic Models of Sorption: A Theoretical Analysis, J. Colloid Interface Sci. 276(1): 47-52 (2004).
[47] Kushwaha S., Sodaye S., Sadhakar P.P., Adsorption of Hg(II) from Aqueous Solution onto Borassus Flabeliffer: Equilibrium and Kinetic Studies, Desalination Water Treatment, 12(2009): 100-107 (2009).
[48] Ashardi M., Nezhad A.K., Firouzabadi H., Abbaspourrad A., Adsorption of Mercury Ions from Wastewater by a Hyperbranched and Multi-Functionalized Dendrimer Modified Mixed-Oxides Nanoparticles, J. Colloid Interface Sci., 505(1): 293-306 (2017). 
[49] Tovar C.T., Ortiz A.V., Jaraba L.E.G., Kinetics of Adsorption in Mercury Removal Using Cassava (Manhiot esculenta) and Lemon (Citrus limonum) Wastes Modified with Citric Acid, Ing. Univ. Bogota (Colombia), 19(2): 293-298 (2015).
[50] Giraldo S., Robles I., Ramirez A., Florez E., Acelas N., Mercury Removal from Wastewater Using Agroindustrial Waste Adsorbents, SN Appl. Sci. 2(2020): 1-17 (2020).
[51] Zabihi M., Haghighi Asl A., Ahmadpour A., Studies on Adsorption of Mercury from Aqueous Solution on Activated Carbons Prepared from Walnut Shell, J. Hazard. Mater., 174(1): 251-256 (2010).