Lacunary Keggin-Type Hetero Polyoxometalate, K7PMo2W9O39, Supported on Nano ZnO as an Efficient Photocatalyst for Degradation of Phenol in Water Solution

Document Type : Research Article

Authors

1 Department of Environment, Yazd Branch, Islamic Azad University, Yazd, I.R. IRAN

2 Chemistry and Environment Research Center, Yazd Branch, Islamic Azad University, Yazd, I.R. IRAN

3 Department of Environmental Health, Faculty of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, I.R. IRAN

Abstract

In the present research, Lacunary Keggin-type heteropolyoxometalate, (K7PMo2W9O39) supported on ZnO nanoparticles was prepared by the impregnation method. Nanoparticle characteristics and the remaining Keggin structure in the nanocomposites were confirmed by FT-IR and XRD analyses. The photocatalytic activity of prepared K7PMo2W9O39/ZnO for degradation of phenol under UV light was investigated.  H2O2 was used as an oxidant in the photocatalytic degradation process of phenol. The results indicated that synthesized nano photocatalyst could be considered an appropriate heterogonous photocatalyst in the removal of organic pollutants from aqueous solutions and heterogenization of Lacunary Keggin-type heteropolyoxometalate on ZnO nanoparticles resulted in the improved light absorption intensity and decreased band gap of nanocomposites. Degradation of phenol in the presence of the K7PMo2W9O39/ZnO could lead to the disappearance of approximately 93% of phenol after 60 min. But degradation for the same experiment performed in the presence of the K7PMo2W9O39 or /ZnO was less than 60% at the same time.

Keywords

Main Subjects


[1] Pintar A., Levec J., Catalytic Liquid-Phase Oxidation of Phenol Aqueous Solutions. A Kinetic Investigation, J. Ind. Eng. Chem. Res., 33: 3070–3077 (1994).
[2] Ahmaruzzaman M., Sharma D.K.,  Adsorption of Phenols from Wastewater, J. Colloid Interface Sci., 287: 14–24 (2005).
[4] Kujawski W., Warszawski,A., Ratajczak W., Porebski T., Capala W., Ostrowska I., Removal of Phenol from Wastewater by Different Separation Techniques, Desalination, 163: 287–296 (2004).
[6] Kim S-R., Ali I., Kim J-O., Phenol Degradation Using an Anodized Graphene-Doped TiO2  Nanotube Composite under Visible Light, Applied Surface Science., 477: 71-78 (2019).
[7] Roostaei N., Tezel F.H., Removal of Phenol From Aqueous Solutions by Adsorption, J. Environ. Manage., 70: 157–164 (2004).
[8] Miklos D.B., Remy C., Jekel M., Linde K.G., Drewes J. E., Hübner U., Evaluation of Advanced Oxidation Processes for Water and Wastewater Treatment–A Critical Review, Water Research, 139: 118-131 (2018).
[9] Vaiano, V., Matarangolo, M., Murcia, J., Rojas, H., Navío, J., Hidalgo, M., Enhanced Photocatalytic Removal of Phenol from Aqueous Solutions Using ZnO modified with Ag, Appl. Catal. B: Environmental., 225: 197-206 (2018).
[11] Heravi M.M., Sadjadi S., Recent Developments in Use of Heteropolyacids, Their Salts and Polyoxometalates in Organic Synthesis, J. Iran. Chem. Soc., 6: 1-8 (2009).
[12] Esfandyari M., Heravi  M. Oskooie  H., Fotouhi L., Tajbakhsh  M., Bamoharram F., H3PW12O40: An Efficient and Green Catalyst, for the Facile and Selective Oxidation of Sulfides to Sulfoxides, Applied to the Last Step of the Synthesis of Omeprazole, Iran. J. Chem. Chem. Eng. (IJCCE), 36(4): 21-29 (2017).
[14] Pope M.T., “Heteropoly and Isopoly Oxometalates”, Springer-Verlag Berlin Heidelberg(1997).
[15] Ladera R. M., Ojeda M., Fierro J. G.,  Rojas S., TiO2-Supported Heteropoly Acid Catalysts for Dehydration of Methanol to Dimethyl Ether: Relevance of Dispersion and Support Interaction, Catal. Sci. Technol., 5: 484-491 (2015).
[16] Marcì  G., García-López  E.I., Palmisano L., Heteropolyacid‐Based Materials as Heterogeneous Photocatalysts, Eur. J. Inorg. Chem., 21-35 (2014).
[17] Hanif  M.A., Nisar  S., Rashid  U., Supported Solid and Heteropoly Acid Catalysts for Production of Biodiesel, Cat. Rev. - Sci. Eng., 59: 165-188 (2017).
[18] Taghavi M., Tabatabaee M., Ehrampoush M.H., Ghaneian M.T., Afsharnia M., Alami A., Mardaneh J., Synthesis, Characterization and Photocatalytic Activity of TiO2/ZnO-Supported Phosphomolybdic Acid Nanocomposites, J. Molec. Liq., 249: 546-553 (2018).
[19] Taghavi M., Ghaneian M.T.,  Ehrampoush M. H., Tabatabaee M., Afsharnia M., Alami A., Mardaneh J., Feasibility of Applying the LED-UV-induced TiO2/ZnO-Supported H3PMo12O40 Nanoparticles in Photocatalytic Degradation of Aniline, Environ. Monit. Assess., 190: 188 (2018).
[20] Taghavi M., Ehrampoush M. H., Ghaneian M.T., Tabatabaee M.,  Fakhri Y., Application of a Keggin-Type Heteropoly Acid on Supporting Nanoparticles in Photocatalytic Degradation of Organic Pollutants in Aqueous Solutions, J. Clean. Prod., 197: 1447-1453 (2018).
[21] Tabatabaee M., Hashemian S., Roozbeh M., Roozbeh M., Mirjalili M., Lacunary Keggin-type heteropolyanion, a-[PMo2W9O39]7-, as an Efficient Homogenous Catalyst for Oxidation of Aromatic Amines, Res. Chem. Intermed., 41: 231-234 (2015).
[22] Tabatabaee M., Roozbeh M., Roozbeh M., Catalytic Effect of Lucunary Heteropolyanion Containing Molybdenum and Tungsten Atoms on Decolorization of Direct Blue 71, Chin. Chem. Lett., 22: 1501-1504 (2011).
[23] Mssart R., Contant R., Fruchart, J M., Ciabrini J P., Fournier M., Phosphorus-31 NMR Studies on Molybdic and Tungstic Heteropolyanions. Correlation Between Structure and Chemical Shift, Inorg Chem., 16: 2916-2921 (1977).
[24] Saeedi S., Godini H., Kamarehie B., Zare,] S., Rashidipoor M., Ebrahimi Z., Mostafaie P., Investigation of Experimental Factors in Photocatalytical Degradation of Phenol from Aqueous Solution by UV/ZnOJ. Environ. Health Engineering., 3: 220-227 (2016).
[25] Chen X., Wu Z., Liu D., Gao Z., Preparation of ZnO Photocatalyst for the Efficient and Rapid Photocatalytic Degradation of Azo Dyes, Nanoscale Res. Lett., 12: 143 (2017).
[26] Hoffmann M.R., Martin S.T., Choi W., Bahnemann D.W., Environmental Applications of Semiconductor Photocatalysis, Chem. Rev., 95: 69-96 (1995).
[27] Serpone N., Emeline A.V., Semiconductor Photocatalysis — Past, Present, and Future OutlookJ. Phys. Chem. Lett., 3: 673-677 (2012).
[28] Ramandi S., Entezari M. H., Ghows N., Solar Photocatalytic Degradation of Diclofenac by N-Doped TiO2 Nanoparticles Synthesized by UltrasoundIran. J. Chem. Chem. Eng (IJCCE)., 39(3): 159-173 (2020).
[29] Lu N., Lu Y., Liu F., Zhao K., Yuan X., Zhao Y., Li Y.,  Qin H., Zhu J., H₃PW₁₂O₄₀/TiO₂ Catalyst-Induced Photodegradation of Bisphenol A (BPA): Kinetics, Toxicity and Degradation Pathways, Chemosphere, 91: 1266–1272 (2013).