Mixed Matrix Membranes Using SAPO-34/APMDES/PES for Carbon Dioxide/Methane Separation

Document Type : Research Article


1 Department of Chemical Engineering, South Tehran Branch, Islamic Azad University, Tehran, I.R. IRAN

2 Institut de Recherche en Génie Chimique et Pétrolier (IRGCP), Paris Cedex, FRANCE

3 Discipline of Chemical Engineering, School of Engineering, University of KwaZulu-Natal, Howard College Campus, King George V Avenue, Durban 4041, SOUTH AFRICA


Among various CO2-mitigation technologies, membrane-based technology has offered a more energy-efficient and eco-friendly process for CO2 separation from large emission sources Despite the predominance of polymeric membranes in the CO2/CH4 separation, the tradeoff limitation between membrane selectivity and permeability hinders a good separation performance of these membranes Mixed matrix membranes can offer a dramatic improvement to overcome this shortcoming In this study, polyethersulfone (PES) mixed matrix membranes incorporated with small pore zeolite were proposed for CO2/CH4 separation SAPO-34 zeolite was used as inorganic fillers to enhance gas selectivity 3 3- aminopropylmethyldiethoxysilane (APMDES) was proposed to modify SAPO-34 zeolite before adding into asymmetric PES MMMs. The mixed matrix membranes were then characterized by FTIR, TGA, SEM, and gas permeation analysis. The separation results revealed that the increment of temperature from 30 °C to 50 °C reduced the CO2/CH4 separation factor while increasing feed pressure from 3 bar to 15 and the increment of CO2 feed composition from 15 to 42.5 vol% increased the separation factor of PES/SAPO-34/APMDES. The DoE results showed that the feed pressure was the most significant process parameter that intensely affected the CH4 permeance, CO2 permeance, and CO2/CH4 separation factor. The synthesized MMMs in this study showed competitive CO2/CH4 separation performance compared with reported state-of-the-art PES-based membranes in pure gas permeation tests.


Main Subjects

[1] Pera-Titus M., Porous Inorganic Membranes for CO2 Capture: Present and Prospects, Chemical Reviews, 114(2): 1413-1492 (2014).
[2] Li B., Duan Y., Luebke D., Morreale B., Advances in CO2 Capture Technology: A Patent Review, Applied Energy, 102: 1439-1447 (2013).
[3] Hudiono Y.C., Carlisle T.K., LaFrate A.L., Gin D.L., Noble R.D., Novel Mixed Matrix Membranes Based on Polymerizable. Room-Temperature Ionic Liquids and SAPO-34 Particles to Improve CO2 Separation, Journal of Membrane Science, 370(1-2): 141-148 (2019).
[4] Scholes C.A., Smith K.H.,Kentish S.E., Stevens G.W.,  CO2 Capture from Pre-Combustion Processes - Strategies for Membrane Gas Separation, International Journal of Greenhouse Gas Control, 4(5): 739-755 (2020).
[5] Robeson L.M., The Upper Bound Revisited, Journal of Membrane Science, 320(1-2): 390- 400 (2018).
[6] Carreon M.A., Li Sh., Falconer J.L., Noble R.D., Alumina-Supported SAPO-34 Membranes for CO2/CH4 Separation, Journal of the American Chemical Society, 130(16): 5412-5413 (2018).
[7] Nik O.G., Chen X.Y., Kaliaguine S., Amine-Functionalized Zeolite FAU/E.MT-Polyimide Mixed Matrix Membranes for CO2/CH4 Separation, Journal of Membrane Science, 379(1-2): 468-478 (2019).
[9] Hosseini S.S., Li Y., Chung T.Sh., Liu Y., Enhanced Gas Separation Performance. of Nanocomposite Membranes Using MgO Nanoparticles, Journal of Membrane Science, 302(1-2): 207-217 (2017).
[10] Li Y., Chung T.S., Kulprathipanja S., Novel Ag+-Zeolite/Polymer Mixed Matrix Membranes with a High CO2/CH4 Selectivity, AIChE Journal, 53(3): 610-616 (2017).
[11] Sadeghi M., Semsarzadeh M.A., Moadel H., Enhancement of the Gas Separation Properties of Polybenzimidazole (PBI) Membrane by Incorporation of Silica Nano Particles, Journal of Membrane Science, 331(1-2): 21-30 (2019).
[13] Vu D.Q., Koros W.J., Miller S.J., Mixed Matrix Membranes Using Carbon Molecular Sieves: I Preparation and Experimental Results, Journal of Membrane Science, 211(2): 311-334 (2003).
[14] Anson M., Marchese J., Garis E., Ochoa N., Pagliero C., ABS Copolymer-Activated Carbon Mixed Matrix Membranes for CO2/CH4 Separation, Journal of Membrane Science, 243(1-2): 19-28 (2020).
[15] Şener T., Okumuş E., Gürkan T., Yilmaz L., The Effect of Different Solvents on the. Performance of Zeolite-Filled Composite. Pervaporation Membranes, Desalination, 261(1-2): 181-185 (2010).
[16] Chen X.Y., Vinh-Thang H., Rodrigue D., Kaliaguine S., Amine-Functionalized MIL-53 Metal-Organic Framework in Polyimide Mixed Matrix Membranes for CO2/CH4 Separation, Industrial and Engineering Chemistry Research, 51(19): 6895-6906 (2012).
[17] Ismail A.F., Kusworo T.D., Mustafa A., Enhanced Gas Permeation Performance of Polyethersulfone Mixed Matrix Hollow Fiber Membranes Using Novel Dynasylan Ameo Silane Agent, Journal of Membrane Science, 319(1-2): 306-312 (2018).
 [18] Pe.char T.W., Kim S., Vaughan B., Marand E., Tsapatsis M., Jeong K., Cornelius C.J., Fabrication and Characterization of Polyimide-Zeolite L Mixed Matrix Membranes for Gas Separations, Journal of Membrane Science, 277(1-2): 195-202 (2006).
[19] Mansourizadeh A., Ismail A.F., Effect of Additives on the Structure and Performance. of Polysulfone Hollow Fiber Membranes for CO2 Absorption, Journal of Membrane Science., 348(1-2): 260-267 (2010).
[20] Hillock A.M.W., Miller S.J., Koros W.J., Crosslinked Mixed Matrix Membranes for the Purification of Natural Gas: Effects of Sieve Surface Modification, Journal of Membrane Science, 314(1-2): 193-199 (2018).
[21] Li S., Alvarado G., Noble R.D., Falconer J.L., Effects of Impurities on CO2/CH4 Separations Through SAPO-34 Membranes, Journal of Membrane Science, 251(1-2): 59-66 (2005).
[24] Alizadeh M., Sadrameli S.M., Numerical Modeling and Optimization of Thermal Comfort in Building: Central Composite Design and CFD Simulation, Energy and Buildings, 164: 187-202 (2018).
[25] Junaidi M.U.M.,Leo C.P., Kamal S.N.M., Ahmad A.L., Chew T.L., Carbon Dioxide Removal from Methane by Using Polysulfone/SAPO-44 Mixed Matrix Membranes, Fuel Processing Technology, 112: 1-6 (2019).
[26] Leo C.P., Ahmad Kamil N.H., Junaidi M.U.M., Kamal S.N.M., Ahmad A.L., The Potential of SAPO-44 Zeolite Filler in Fouling Mitigation of Polysulfone Ultrafiltration Membrane, Separation and Purification Technology, 103:  84-91 (2019).
[27] Aroon M.A., Ismail A.F., Matsuura T., Montazer Rahmati M.M., Performance Studies of Mixed Matrix Membranes for Gas Separation: A Review, Separation and Purification Technology, 75(3): 229-242 2010.
[28] Favvas E.P., Stefanopoulos K.L., Nolan J.W., Papageorgiu S.K., Mitropoulos A.Ch., Lairez D., Mixed Matrix Hollow Fiber Membranes with Enhanced Gas Permeation Properties, Separation and Purification Technology, 132: 336-345 (2014).
[29] Zhuang G.L., Tseng H.H., Uchytil P., Wey M.Y., Enhancing the CO2 Plasticization Resistance of PS Mixed-Matrix Membrane by Blunt Zeolitic Imidazolate Framework, Journal of CO2 Utilization, 25: 79-88 (2018).
[30] Bos A., Pünt I.G.M., Wessling M., Strathmann H., CO2-Induced Plasticization Phenomena in Glassy Polymers, Journal of Membrane Science, 155(1): 67-78 (1999).
[31] Molki B., Mohammadi Aframehr W., Bagheri R., Salimi J., Mixed Matrix Membranes of Polyurethane with Nickel Oxide Nanoparticles for CO2 Gas Separation, Journal of Membrane Science, 2018. 549: p. 588-601.
 [32] Mubashir M., Yeong Y.F., Leng Chew T., Lau K.K., Comparison of Post-Treatment Methods on the Performance of Hollow Fiber Membranes Containing Metal Organic Framework in Gases Separation, Industrial and Engineering Chemistry Research, 58(17): 7120-7130 (2019).
[33] Oyama S.T., Stagg-Williams S.M., Inorganic, Polymeric and Composite. Membranes: Structure., Function and other Correlations, Inorganic, Polymeric, and Composite. Membranes: Structure- Function and Other Correlations, (2011).
[34] Falbo F., et al., CO Separation by Means of Matrimid Hollow Fibre Membranes, Appl. Petrochem Res., 6: 439-450 (2016).
[35] Rodenas T., Dalen M., Serra-Crespo P., Kapteijn F., Gascon J., Mixed Matrix Membranes Based on NH2-functionalized MIL-type MOFs: Influence. of Structural and Operational Parameters on the CO 2/CH4 Separation Performance, Microporous and Mesoporous Materials, 192: 35-42 (2014).
[37] Husain S., Koros W.J., Mixed Matrix Hollow Fiber Membranes Made with Modified HSSZ-13 Zeolite in Polyetherimide Polymer Matrix for Gas Separation, Journal of Membrane Science, 288(1-2): 195-207 (2007).
[38] Etxeberria-Benavides M., et al., High Performance Mixed Matrix Membranes (MMMs) Composed of ZIF-94 Filler and 6FDA-DAM Polymer, Journal of Membrane Science, 550: 198-207 (2018).