Novel Cyclic Schiff Base and Its Transition Metal Complexes: Synthesis, Spectral and Biological Investigations

Document Type : Research Article


1 Department of Chemistry, Maharishi Markandeshwar University, Sadopur-Ambala-134007, Haryana, INDIA

2 Department of Biotechnology, Maharishi Markandeshwar University (Deemed to be a University), Mullana-Ambala-133207, Haryana, INDIA


2, 5-hexanedione,3,4-diacetyl, and ethylenediamine were condensed to obtain a novel Schiff base ligand. Ni(II) and Co(II) complexes have been synthesized by reacting ligand with metal salts in a 1:10 ratio.  Elemental analysis, IR, 1HNMR, and mass spectrometry revealed a unique structure, a cyclic decamer, of ligand and metal complexes. Synthesized compounds were screened for anti-microbial character against fungi viz. Aspergillus niger and Trichophyton rubrum and bacteria viz. Staphylococcus aureus and Klebsiella pneumonia, using well plate diffusion method. Investigation of antiangiogenic activity was done using CAM assay. Biological activities of ligand were found enhanced after coordination with metal ions.


Main Subjects

[1] Datta R., Ramya V., Biologically Important Schiff Bases and Their Transition Metal Complexes, Mapana J. Sci. (MJS), 11(2): 57-72 (2012).
[2] Mahmoodabadi M., Khoshdast H., Shojaei V., Efficient Dye Removal from Aqueous Solutions Using Rhamnolipid Biosurfactants by Foam Flotation, Iran. J. Chem. Chem. Eng.(IJCCE), 38(4): 127-140 (2019).
[3] Khalil M.M.H., Ismail E.H., Mohamed G.G., Zayed E.M., Badr A., Synthesis and Characterization of a Novel Schiff Base Metal Complexes and their Application in Determination of Iron in Different Types of Natural Water, Open Journal of Inorganic Chemistry,2:13-21 (2012).
[4] Farahani M.M., Taghizadeh, F., Molybdenum-Schiff Base ComplexImmobilized on Magnetite Nanoparticles as a Reusable Epoxidation Catalyst, Iran. J. Chem. Chem. Eng. (IJCCE), 37(6): 35-42 (2018).
[7] Aggarwal N., Kumar R., Dureja P., Rawat D.S., Schiff Bases as Potential Fungicides and Nitrification Inhibitors, J. Agric. Food Chem., 57: 8520–8525 (2009).
[8] Acharjee K., Sangma D.K., Mishra D.K., Deb P., Sinha B., Effect of some Schiff base ligands and their Zn (II) Complexes on Germination and Seedling Growth of Papaya (Carica papaya L.), Indian Journal of Advances in Chemical Science, 3(2): 141-146 (2015).
[9] Demir R., Kaya I., Humidity Properties of Schiff Base Polymers, Open Chem., 16: 937-943 (2018).
[10] Xu Y.M., Li K., Wang Y., Deng W., Yao Z.J., Ligands: Synthesis, Characterization, and Catalytic Activity in Norbornene Polymerization, Polymers, 105(9): 1-10 (2017).
[11] Gupta A., Dangi V., Baral M., Kanungo B.K., Development of a Polyfunctional Dipodal Schiff Base: An Efficient Chelator and a Potential Zinc Sensor, Iran. J. Chem. Chem. Eng. (IJCCE), 38(6): 141-156 (2019).
[12] Khan M.I., Gul S., Khan M.A., Schiff Bases and Their Metallic Derivatives: Highly Versatile Molecules with Biological and Abiological Perspective, A Chapter of: “Stability and Applications of Coordination Compounds”, 1-15 (2019).
[13] Aldossary S.A., Review on Pharmacology of Cisplatin: Clinical Use, Toxicity and Mechanism of Resistance of Cisplatin, Biomedical & Pharmacology Journal, 12(1): 7-15 (2019).
[14] Zhang B., Luo H., Xu Q., Lin L., Zhang B., Antitumor Activity of a Trans-thiosemicarbazone Schiff Base Palladium (II) Complex on Human Gastric Adenocarcinoma Cells, Oncotarget, 8(8): 13620-13631 (2017).
[15] Kumaran J.S., Priya S., Jayachandramani S., Mahalakshmi S., Synthesis, Spectroscopic Characterization and Biological Activities of Transition Metal Complexes Derived from a Tridentate Schiff Base, J. Chem., 2013: 1-10 (2012).
[19] Rana K., Pandurangan A., Singh N., Tiwari A.K., A Systemic Review of Schiff Bases as an Analgesic, Anti-inflammatory, Int. J. Curr. Pharm. Res., 4(2): 5-11 (2012).
[20] Zhang B., Liu Y., Wang Z., Lia Y., Wang Q., Antiviral Activity and Mechanism of Gossypols: Effects of the O2._ Production Rate and the Chirality, Royal Soc. Chem. Adv., 7: 10266–10277 (2017).
[21] Mohamed E.S.M., Ahmed M.S., Yasen H.S., Galila A.Y., Synthesis, Reactions and Antioxidant Activity of 5-(3', 4'-dihydroxy-tetrahydrofuran-2'-yl)-2-methyl-3-carbohydrazide, Iran. J. Chem. Chem. Eng. (IJCCE), 38(6): 229-242 (2019).
[22] Al-Khathami N.D., Al-Rashdi K.S., Babgi B.A., Hussien MA., Arshad M.N., Eltayeb N.E., Elsilk S.E. Lasri J., Basaleh A.S., Al-Jahdali M., Spectroscopic and Biological Properties of Platinum Complexes Derived from 2-pyridyl Schiff bases, J. Soudi Chemi. Soc., 23: 903-915 (2019).
[23] Almarhoon Z.M., Al-Onazi W.A., Alothman A.A., Al-Mohaimeed A.M., Al-Farra E.S., Synthesis, DNA Binding, and Molecular Docking Studies of Dimethylaminobenzaldehyde-Based Bioactive Schiff Bases, J. Chem., 2019: 1-14 (2019).
[24] Zhao P., Zhai S., Dong J., Gao L., Liu X., Wang L., Kong J., Li L., Synthesis, Structure, DNA Interaction, and SOD Activity of Three Nickel(II) Complexes Containing L-Phenylalanine Schiff Base and 1,10-Phenanthroline, Bioinorg. Chem. Appli., 2018: 1-16 (2018).
[25] Akkili S., Karredduala R., Hussain R.K., Synthesis, Characterization, DNA Binding and Nuclease Activity of Cobalt(II) Complexes of IsonicotinoylHydrazones, Iran. J. Chem. Chem. Eng. (IJCCE), 37(4): 63-74 (2018).
[26] More M.S., Joshi P.G., Mishra Y.K., Khanna P.K., Metal Complexes Driven from Schiff Bases and Semicarbazones for Biomedical and Allied Applications: A Review, Mat. Today Chem., 14: 1-22 (2019).
[27] Vasantha P., Kumar B.S., Shekhar B.,  Lakshmi P.V.A., Copper-Metformin Ternary Complexes: Thermal, Photochemosensitivity and Molecular Docking Studies, Mat. Sci. Eng., 19: 621-633 (2018).
[30] Sumrra S.H., Ibrahim M., Ambreen S., Imran M., Danish M., Rehmani F.S., Synthesis, Spectral Characterization, and Biological Evaluation of Transition Metal Complexes of Bidentate N, O Donor Schiff Bases, Bioinorg. Chem. Appli., 2014: 1-10 (2014).
[31] Prakash A., Singh B.K., Bhojak N., Adhikari D., Synthesis and Characterization of Bioactive Zinc(II)
and Cadmium(II) Complexes with New Schiff Bases Derived from 4-nitrobenzaldehyde and Acetophenone with Ethylenediamine,
Spectrochimica. Acta Part A: Mol. Biomol. Spectro., 76 (2010): 356-362 (2010).
[33] Emara A.A.A., Khalil S.M.E., Salib K.A.R., Di-, Tri- and Poly-nuclear Transition Metal Complexes of 3,4-Diacetyl-2,5- Hexanedione, J. Coord. Chem., 36: 289-301 (1995).
[34] Mikhalyova E.A., Trofimenko S., Zeller M., Addison A.W., Pavlishchuk V.V., New Homodinuclear Tris(3-alkylpyrazolyl) boratecomplexes of CoII and NiII with a Tetraacetylethanedianion as a Bridging Ligand, Scorpionates: Acta Cryst Structural Chem., 72: 777-785 (2016).
[35] Hentschel F., Vinogradov V.V., Vinogradov A.V., Agafonov A.V., Guliants V.V., Persson I., Seisenbaeva G.A., Kessler V.G., Zirconium(IV) and Hafnium(IV) Coordination Polymers with a Tetra-acetyl-ethane (Bisacac) Ligand: Synthesis, Structure Elucidation and Gas Sorption Behavior, Polyhedron, 89: 297-303 (2015).
[36] McKernan L.T., Niemeier R.T., Kreiss K., Hubbs A., Park R., Dankovic D., DunnK.H., Parker J., Fedan K., Streicher R., Fedan J., Garcia A, Whittaker C., Gilbert S., Nourian F., Galloway E., Smith R., Lentz T.J., Hirst D., Topmiller J., Curwin B., “Criteria for  Recommended Standard: Occupational Exposure to Diacetyl and 2,3-Pentanedione, 4thChapter”, Department of Health And Human Services Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health (DHHS, NIOSH) (2016).
[37] Khajvand T., Akhoondi R., Chaichi M.J., Rezaee E., Golchoubian H., Two New Dinuclear Copper(II) Complexes as Efficient Catalysts of Luminol Chemiluminescence, J. Photochem.Photobio., 282: 9-15 (2014).
[38] Charles R.G., Tetraacetylethane, Org. Syn., 4: 869 (1963).
[39] Ahmed N., Riaz M., Ahmed A., Bhagat M., Synthesis, Characterization, and Biological Evaluation of Zn(II) Complex with Tridentate (NNO Donor) Schiff Base Ligand, Inter. J. Inorg. Chem., 2015: 1-5 (2014).
[40] Laak E.A.T., Noordergraaf J.H., Verschure M.H., Susceptibilities of Mycoplasma Bovis, Mycoplasma Dispar, and Ureaplasma Diversum Strains to AntimicrobialAgents In Vitro, Antimicrob. Agents Chemother., 37(2): 317-321 (1993).
[42] Kardaş T.A., Ozbek H.A., Akgul Y., Demirhan F., Synthesis, Structure and Electrochemical Properties of N,N′-bis(ferrocenylmethylene)ethylenediamine Schiff Base and its Metal Complexes, Inorg. Nanomat. Chem., 47(10): 1475-1479 (2017).
[49] Al-Rasheed H.H., Sholkamy E.N., Al-Alshaikh M., Siddiqui M.R.H., Al-Obaidi A.S., El-Faham A., Synthesis, Characterization, and Antimicrobial Studies of Novel Series of 2,4-Bis(hydrazino)-6-substituted-1,3,5-triazine and Their Schiff Base Derivatives, J. Chem., 2018: 1-13 (2018).
[50] Login C.C., Baldea I., Tiperciuc B., Benedec D., Vodnar D.C., Decea N., SuciuS., A Novel Thiazolyl Schiff Base: Antibacterial and Antifungal Effects and In Vitro Oxidative Stress Modulation on Human Endothelial Cells, Oxi. Medi. Cellular Longevity, 2019: 1-11 (2019).
[51] Kumari E., Singh S.K., Synthesis, Characterization and Antimicrobial Activity of Some Schiff Base Metal Chelates, J. Chem. Pharm. Res., 9(4): 180-184 (2017).
[56] Dhahagani K., Kumar S.M., Chakkaravarthi G., Anitha K., Rajesh J., Ramu A., Rajagopal G., Synthesis and Spectral Characterization of Schiff Base Complexes of Cu(II), Co(II), Zn(II) and VO(IV) containing 4-(4-aminophenyl)morpholine Derivatives: Antimicrobial Evaluation and Anticancer Studies, Spectrochimica Acta Part A: Mol. Biomol. Spectro., 117: 87-94 (2014).
[57] Hossein G., Masoud M.B., Farzaneh V., Antibacterial Activity of the Lipopeptide Biosurfactant Produced by Bacillus mojavensisPTCC 1696, Iran. J. Chem. Chem. Eng. (IJCCE), 38(6): 275-284 (2019).
[58] Chen F., Moat J., McFeely D., Clarkson G., Hands-Portman I.J., Furner-Pardoe J.P., Harrison F., Dowson C.G., Sadler P.J., Biguanide Iridium(III) Complexes with Potent Antimicrobial Activity,  J. Med. Chem., 61: 7330-7344 (2018).
[60] Forster J.C., Phillips W.M.H., Douglass M.J.J., Bezak E., A Review of the Development of Tumor Vasculature and its Effects on the Tumor Microenvironment, Hypoxia, 5: 21–32 (2017).
[61] Zhang L., Wang Y., Rashid M.H., Liu M., Angara K., Mivechi N.F., Maihle N.J., Arbab A.S., Ko., Malignant Pericytes Expressing GT198 Give Rise to Tumor Cells Through Angiogenesis, Oncotarget, 8(31): 51591-51607 (2017).
[62] Teleanu R.I., Chircov C., Grumezescu A.M., Teleanu D.M., Tumor Angiogenesis and Anti-Angiogenic Strategies for Cancer Treatment, J. Clin. Med., 9(84): 1-21 (2020).
[63] Abdalla A.M.E., Xiao L., Ullah M.W., Yu M., Ouyang C., Yang G., Current Challenges of Cancer Anti-angiogenic Therapy and the Promise of Nanotherapeutics, Theranostics, 8(2): 533-549 (2018).