On the Calculation of the Virial Coefficients and Low-Pressure Joule-Thomson Effect for Refrigerant Fluids Using Two Equation of State Models

Document Type : Research Article

Authors

1 Materials and Nuclear Fuel Research School, Nuclear Science and Technology Research Institute, AEOI, Tehran, I.R. IRAN

2 Department of Chemistry, Payam Noor University, Tehran, I.R. IRAN

Abstract

In this study, we calculate virial coefficients and the Joule-Thomson effect at low pressure for refrigerant fluids in order to evaluate the performance of two models of Equations of State (EOS). The studied refrigerants are R123, R124, R143a, and R152a. The investigated EOSs are van der Waals type consist of van der Waals (vdW), Redlich-Kwong (RK), Soave- Redlich-Kwong (SRK) and Peng-Robinson (PR). In our work, we use Dieterici model of EOS consisting of Dieterici (D) and Dieterici-Carnahan-Starling (DCS). The obtained results show that all EOSs predict the qualitative behavior of the second virial coefficient of refrigerants in wide range temperatures but, cannot provide the qualitative behavior of the third virial coefficient of refrigerants in T£ Tc in comparing with experimental data. Quantitatively, the EOSs on the basis of vdW model present good results in a wide range of temperatures. Both models of equations of state can also predict the qualitative behavior of changing the low-pressure J-T coefficient with respect to temperature. Our study shows that the EOSs on the basis of vdW model, especially PR, present better results than the other model in a wide range of temperatures.

Keywords

Main Subjects


[1] De Paula C. H., Duarte W. M., Rocha T. T. M., de Oliveira R.N., Maia A. A. T., Optimal Design and Environmental, Energy and Exergy Analysis of a Vapor Compression Refrigeration System Using R290, R1234yf, and R744 as Alternatives to Replace R134a,  International Journal of Refrigeration, 113: 10-20 (2020)
[2] Mota-Babiloni A., Mastani JoybarI M., Navarro-EsbrI J., Mateu-Royo C., Barragán-Cervera Á., Amat-Albuixech M., Molés F., Ultralow-Temperature Refrigeration Systems: Configurations and Refrigerants to Reduce the Environmental Impact, International Journal of Refrigeration, 111: 147-158 (2020).
[3] Maiorino A., Aprea C., Del Duca M. G., Llopis R., Sánchez D., Cabello R., R-152a as an Alternative Refrigerant to R-134a in Domestic Refrigerators:
An Experimental Analysis
, International Journal of Refrigeration, 96: 106-116 (2018)
[4] Kwang-Seop C., min soo K., Yongchan K., Cho K., Recent Progress in Air Conditioning and Refrigeration Research, Korean Journal of Air-Conditioning and Refrigeration Engineering, 12: 1234-1268 (2004)
[5] Saberimoghaddam A., Bahri Rasht Abadi M.M., Thermal Design Considerations and Performance Evaluation of Cryogenic Tube in Tube Heat Exchangers, Iran. J. Chem. Chem. Eng. (IJCCE), 38(1): 243-253 (2019)
[6] Nagalakshmi K., Marurhiprasad Yadav G., The Design and Performance Analysis of Refrigeration System Using R12 & R134a Refrigerants, Int. Journal of Engineering Research and Applications, 4: 638-643 (2014)
[7] Kitanovski A., Plaznik U., Tomc U. and Poredos A., Present and Future Caloric Refrigeration and Heat-Pump Technologiesactuelles et Futures Technologies de Froid Thermique et de Pompe à Chaleur, International Journal of Refrigeration, 57: 288-298 (2015)
[8] Wei Y.S., Sadus R. J., Equations of State for the Calculation of Fluid‐Phase Equilibria, AIChE J., 46: 169-196 (2000)
[9] Valderrama J.O., The State of the Cubic Equations of State, Ind. Eng. Chem. Res., 42: 1603-1618 (2003)
[10] Guevara-Rodriguez F de J., A methodology to define the Cubic Equation of State of a Simple Fluid, Fluid Phase Equilibria, 307(2): 190-196 (2011)
[11] Assael M. J., Trusler J.P.M. and Tsolakis T. F., “An Introduction to Their Prediction Thermophysical Properties of Fluids, Imperial College Press, London, UK, (1996)
[12] Meng L. and Duan Y-Y, Prediction of the Second Cross Virial Coefficients of Nonpolar Binary Mixtures, Fluid Phase Equilibria, 238(2): 229 (2005)
[13] Gibbons R. M., Equations for the Second Virial Coefficient Of Polar Molecules, Cryogenics, 14(7): 399-404 (1974)
[14] Martin J.J., Correlation of Second Virial Coefficients Using a Modified Cubic Equation of State, Ind. Eng. Chem. Fundam., 23(4): 454-459 (1984)
[15] Vetere A., An Improved Method to Predict the Second Virial Coefficients of Pure Compounds, Fluid Phase Equilibria, 164(1): 49-59 (1999)
[16] Ramos-Estrada M., Iglesias-Silva G. A., Hall K. R., Kohler F., Estimation of Third Virial Coefficients at Low Reduced Temperatures, Fluid Phase Equilibria, 240(2): 179-185 (2006)
[17] Harvey A. H. and Lemmon E. W., Correlation for the Second Virial Coefficient of Water, J. Phys. Chem. Ref. Data, 33(1): 369-376 (2004)
[18] Tian J., Gui Y., Mulero A., New Closed Virial Equation of State for Hard-Sphere Fluids, J. Phys. Chem. B, 114(42): 13399-13402 (2010)
[19] Xiang H. W., The New Simple Extended Corresponding-States Principle: Vapor Pressure and Second Virial Coefficient, Chemical Engineering Science, 57(8): 1439 (2002)
[20] Holleran E., Improved Virial Coefficients, Fluid Phase Equilibria, 251(1): 29-32 (2007)
[21] Liu D. X. and Xiang H. W., Corresponding-States Correlation and Prediction of Third Virial Coefficients for a Wide Range of Substances, International Journal of Thermophysics, 24(6): 1667-1680 (2003)
[22] Hayden J. G. and O’Connell P. O., A Generalized Method for Predicting Second Virial Coefficients, Ind. Eng. Chem. Process Des., 14(3): 209-216 (1975)
[23] Van der Waals J. D., “On the Continuity of the Gaseous and Liquid State”,  Doctoral Dissertation, University of Leiden, Holland, (1873)
[24] Dieterici C., Ann. Phys. Chem., Wiedemann Ann., 69: 685 (1899)
[25] Sadus R. J., Equation of State for Fluids: The Dieterici Approach Revisited, J. Chem. Phys., 115(3): 1460 (2001)
[26] Sadus R. J., New Dieterici-Type Equations of State for Fluid Phase Equilibria, Fluid Phase Equilibria, 212(1-2): 31-39 (2003)
[27] Tsonopoulos C., An Empirical Correlation of Second Virial Coefficients, AIChE J., 20: 263–272 (1974)
 [28] Tsonopoulos C., Second Virial Coefficients of Polar Haloalkanes, AIChE J., 21: 827–829 (1975)
[29] Weber L.A., Vapor Pressures and Gas-Phase PVT Data for 1,1-dichloro-2,2,2-trifluoroethane, J. Chem. Eng. Data, 35(3): 237–240 (1990)
[30] Weber L.A., Estimating the Virial Coefficients of Small Polar Molecules, Int. J. Thermophys., 15(3): 461–482 (1994)
[31] Weber L.A., Defibaugh D.R., Vapor Pressures and PVT Properties of the Gas Phase of 1,1,1-Trifluoroethane,
J. Chem. Eng. Data, 41: 1477–1480 (1996)
[32] Boyes S.J., Weber L.A., Vapor Pressures and Gas-Phase PVT Data for 1-Chloro-1,2,2,2-Tetrafluoroethane (R124), Int. J. Thermophys., 15(3): 443–460 (1994)
[33] Orbey H., Vera J.H., Correlation for the Third Virial Coefficient Using Tc, Pc and ω as Parameters,  AIChE J., 29: 107–113 (1983)
[36] Yokozeki A., Sato H., Watanabe K., Ideal-Gas Heat Capacities and Virial Coefficients of HFC Refrigerants, Int. J. Thermophys., 19(1): 89–127 (1998)
[37] Nakamura S., Fujiwara K., Noguchi M., PVT Properties for 1,1,1-Trifluoroethane (R-143a), J. Chem. Eng. Data, 42(2): 334–338 (1997)
[39] Tamatsu T., Sato T., Sato H., Watanabe K., An Experimental Study of the Thermodynamic Properties of 1,1-difluoroethane, Int. J. Thermophys., 13(6): 985–997 (1992).
[40] Di Nicola G., Coccia G., Pierantozzi M., Falone M., A Semi-Empirical Correlation for the Estimation
of the Second Virial Coefficients of Refrigerants
, International Journal of Refrigerants, 68: 242–251 (2016).
[41] Meng L., Duan Y-Y., Li L., Correlations for Second and Third Virial Coefficients of Pure Fluids, Fluid Phase Equilibria, 226: 109-120 (2004).
[42] Leibovici C. F., Nichita D.V., Boyle Temperature and Cubic Equations of State, Fluid Phase Equilibria, 289(1): 94-97 (2010).
[43] NIST Chemistry WebBook, www.nist.gov.
[44] Levine Ira. N., “Physical Chemistry, Fifth ed., McGraw-Hill International Editions, (2002).