Quantum Chemical Study of Hydroxychloroquine and Chloroquine Drugs Used as a Treatment of COVID-19

Document Type : Research Article


Laboratory of Electrochemistry of Molecular Materials and Complex (LEMMC), Department of Process Engineering, Faculty of Technology, University of Ferhat ABBAS Setif-1, El-Mabouda Campus, 19000 Sétif, ALGERIA


Two drugs have been authorized by the Algerian health Ministry to be used in Algeria to treat coronavirus disease 2019 (COVID-19) patients, once is Hydroxychloroquine (HCQ) and the other is Chloroquine (CQ). These drugs have been theoretically studied in order to know their active sites, and vibrational and electronic properties using Density Functional Theory (DFT) at the B3LYP/6-31G (d.p) level. The optimized molecular structures, the vibrational spectra, the HOMO and LUMO properties, dipole moments, Molecular Electrostatic Potentials (MEP), and atomic charges are calculated. In addition, the reactivity of drug molecules has been discussed by calculating some descriptors such as energy gap, hardness, local softness, electronegativity, and electrophilicity.


Main Subjects

[1] Lai C.C., Shih T.P., Ko W.C., Tang H.J., Hsueh P.R., Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and Coronavirus Disease-2019 (COVID-19): The Epidemic and the Challenges, Int J. Antimicrob Agents, 55(3): 105924 (2020).
[2] Wang L., Wang Y., Ye D., Liu Q., Review of the 2019 Novel Coronavirus (SARS-CoV-2) Based on Current Evidence, Int. J. Antimicrob Agents, 55(6): 105948 (2020).
[3] WHO Director-General’s opening remarks at the media briefing on COVID-19–11 March 2020. [https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-I-media-briefing-on-covid-19---11-march-2020]
[4] Gobato R., Mitra A., The Inside Story of Coronavirus Pandemic, Parana Journal of Science and Education (PJSE), 6(3):9 3-100 (2020).
[5] Klaus N., Influence of Chlorine Substituents on Biological Activity of Chemicals: A Review, Pest Manag. Sci., 56(1): 3–21 (2000).
[6] Henschler O., Toxikologie Chlororganischer Verbindungen, Angew. Chemie., 107(8): 1017-1017 (1995).
[7] Hileman B., Concerns Broaden over Chlorine and Chlorinated Hydrocarbons, Chem. Eng. News., 19(1): 11–20 (1993).
[9] Wang M., Cao R., Zhang L., Yang X., Liu J., Xu M., Shi Z., Hu Z., Zhong W., Xiao G., Remdesivir and Chloroquine Effectively Inhibit the Recently Emerged Novel Coronavirus (2019-nCoV) in Vitro, Cell Res, 30(3): 269-271 (2020).
[11] Chinese Clinical Trial Registry. http://www.chictr.org.cn/
[12] Gautret P., Lagier J.C., Parola P., Hoang V.T., Meddeb L., Mailhe M., Doudier B., Courjon J., Giordanengo V., Vieira V.E., Dupont H.T., Honoré S., Colson P., Chabrière E., La Scola B., Rolain J.M., Brouqui P., Raoult D., Hydroxychloroquine and Azithromycin as a Treatment of COVID-19: Results of an Open-Label Non-Randomized Clinical Trial, International Journal of Antimicrobial Agents, 56(1): 105949 (2020).
[13] Zhou D., Dai S.M., Tong Q., COVID-19: A Recommendation to Examine the Effect of Hydroxychloroquine in Preventing Infection and Progression, J Antimicrob Chemother, 75(7): 1667-1670 (2020).
[14] Schrezenmeier E., DörnerT., Mechanisms of Action of Hydroxychloroquine and Chloroquine: Implications for Rheumatology, Nat Rev Rheumatol, 16(3): 155–166 (2020).
[15] Oftadeh M., Madadi Mahani N., Hamadanian M., Density Functional Theory Study of the Local Molecular Properties of Acetamide Derivatives as Anti-HIV Drugs, Res Pharm Sci, 8(4): 285–297 (2013).
[16] Behzadi H., Roonasi P., Taghipour K.A., Van der Spoel D., Manzetti S., Relationship between Electronic Properties and Drug Activity of Seven Quinoxaline Compounds: A DFT Study, J. Mol. Struct, 1091(13): 196-202 (2015).
[17] Tariq A., Nazir S., Arshad A.W., Nawaz F., Ayub K., Iqbal J., DFT Study of the Therapeutic Potential of Phosphorene as a New Drug-Delivery System to Treat CancerRSC Adv, 9(42): 24325-24332 (2019).
[18] Hellal A., Chafaa S., Chafai N., Touafri L., Synthesis, Antibacterial Screening and DFT Studies of Series of Α-Amino-Phosphonates Derivatives from Aminophénols, J. Mol. Struct, 1134(8): 217–225 (2017).
[19] Mehri M., Chafai N., Ouksel L., Benbouguerra K., Hellal A., Chafaa S., Synthesis, electrochemical and classical evaluation of the antioxidant activity of Three α-aminophosphonic  Aacids: Experimental and theoretical investigation, Journal J. Mol. Struct, 1171(21):179 ̶ 189 (2018).
[20] Hellal A., Chafaa S., Chafai N., Synthesis, Antibacterial and Antifungal Screening of Three New of Alpha-aminophosphonic Acids, International Journal of Scientific & Engineering Research, 6(8):1622 ̶ 1627 (2015).
[21] Pandey A.K., Mishra V.N., Singh V., Biological, Electronic, NLO, NBO, TDDFT and Vibrational Analysis of 1-benzyl-4-formyl-1H-pyrrole-3-Carboxamide, Iran. J. Chem. Chem. Eng.(IJCCE), 39(1):233-242 (2020).
[22] Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg  J..L., Hada M., Ehara M. , Toyota K, Fukuda R.,
Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery Jr. J.A., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E.,  Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador PDannenberg., J.J., Dapprich S., Daniels A.D., Farkas O., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J., "Gaussian 09, Revision A.02, Gaussian", Inc., Wallingford, CT, (2009).
[23] Chafai N., Chafaa S., Benbouguerra K., Hellal A., Mehri M., Synthesis, Spectral Analysis, Anti-Corrosive Activity and Theoretical Study of an Aromatic Hydrazone Derivative, J. Mol. Struct, 1181(7): 83-92 (2019).
[25] Chafai N., Chafaa S., Benbouguerra K., Daoud D., Hellal A., Mehri M., Synthesis, Characterization and the Inhibition Activity of a New α-aminophosphonic Derivative on the Corrosion of XC48 Carbon Steel in 0.5 M H2SO4: Experimental and Theoretical Studies, J. Taiwan Inst. Chem. Eng, 70(1):331–344 (2017).
[28] Elmi S., Foroughi M.M., Dehdab M., Shahidi-Zandi M., Computational Evaluation of Corrosion Inhibition of Four Quinoline Derivatives on Carbon Steel in Aqueous Phase, Iran. J. Chem. Chem. Eng (IJCCE)., 38(1): 185-200 (2019).
[30] Lgaz H., Bhat K.S., Salghi R., Shubhalaxmi, Jodeh S., Algarra M., Hammouti B., Ali I.H., Essamri A., Insights into Corrosion Inhibition Behavior of Three Chalcone Derivatives for Mild Steel in Hydrochloric Acid Solution, J. Mol. Liq., 238(13): 71–83 (2017).
[31] Fliszar S., "Charge Distributions and Chemical Effects", Springer, New York (1983).
[32] Silverstein R.M., Webster F.X., "Spectroscopic Identification of Organic Compounds", John Wiley & Sons, Inc., New York (1998).
[33] Yesilkaynak T., Binzet G., Emen F.M., Florke U., Kulcu N., Arslan H., Theoretical and Experimental Studies on N-(6-methylpyridin-2-yl-carbamothioyl) biphenyl-4-carboxamide, Eur. J. Chem, 1(1): 1-5 (2010).
[34] Moumeni O., Chafaa S., Kerkour R., Benbouguerra K., Chafai N., Synthesis, Structural and Anticorrosion Properties of Diethyl(phenylamino)methyl) Phosphonate Derivatives: Experimental and Theoretical Study, J. Mol. Struct, 1206(8): 127693 (2020).
[35] Issa R.M., Awad M.K., Atlam F.M., Quantum Chemical Studies on the Inhibition of Corrosion of Copper Surface by Substituted Uracils, Appl. Surf. Sci, 255(5):2433–2441 (2008).
[36] Vijayaraj R., Subramanian V., Chattaraj P.K., Comparison of Global Reactivity Descriptors Calculated Using Various Density Functionals: A QSAR Perspective, Journal of Chemical Theory and Computation, 5(10): 2744- 2753 (2009).
[38] Domingo L.R., Aurell M.J., Pérez P., Contreras R., Quantitative Characterization of the Global Electrophilicity Power of Common Diene/Dienophile Pairs in Diels-Alder Reactions, Tetrahedron, 58(22): 4417–4423 (2002).