Optimization of CO2 Capture Process Using Dry Sodium-Based Sorbents

Document Type : Research Article


School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, I.R. IRAN


Sodium carbonate (Na2CO3) supported by gamma-alumina (g-Al2O3) is one of the best sorbents for CO2 capture in economic terms because of its low raw material cost and excellent performance in low-temperature operation. The fundamental goal of this study is to optimize the operating conditions of CO2 adsorption by Na2CO3/Al2O3 sorbent in a fixed bed reactor. The sorbent characterization was studied using BET, SEM, XRF, and XRD analyses, and the sorbent structure was compared before and after the carbonation reaction. Moreover, the effects of side reactions on the adsorption process were investigated. The Response Surface Methodology (RSM) was used with Box-Behnken Design (BBD) to design the experiments. The optimum conditions are introduced at the point where initial CO2 capture capacity and deactivation rate constants are as high and as low as possible, respectively. The optimum values of the variables corresponding to the temperature of 50°C, vapor pretreatment time of 9 min, and H2O/CO2 mole ratio of 1. The amounts of initial CO2 capture capacity and deactivation rate constant in the optimum conditions were obtained to be 39.238 mgCO2/gsorbent and 0.416 min-1, respectively.


Main Subjects

[1] Moussa M., Bader N., Querejeta N., Durán I., Pevida C., Ouederni A., Toward Sustainable Hydrogen Storage and Carbon Dioxide Capture in Post-combustion Conditions, J. Environ. Chem. Eng., 5(2):1628–37 (2017).
[2] Lee S-Y., Park S-J., A Review on Solid Adsorbents for Carbon Dioxide Capture, J. Ind. Eng. Chem., 23: 1–11 (2015).
[3] Akhter P., Farkhondehfal M.A., Hernández S., Hussain M., Fina A., Saracco G., Khan A.U., Russoet N., Environmental Issues Regarding CO2 and Recent Strategies for Alternative Fuels Through Photocatalytic Reduction with Titania-Based Materials, J. Environ. Chem. Eng., 4(4): 3934–3953 (2016).
[4] van den Broek M., Hoefnagels R., Rubin E., Turkenburg W., Faaij A., Effects of Technological Learning on Future Cost and Performance of Power Plants with CO2 Capture, Prog. Energy Combust. Sci, 35(6): 457–80 (2009).
[6] Qin C., Yin J., Ran J., Zhang L., Feng B., Effect of Support Material on the Performance of K2CO3-Based Pellets for Cyclic CO2 Capture, Appl Energy, 136:280–8 (2014).
[8]    Cutting R.H., Cahoon L.B., Hall J.C., If the Tide is Rising, Who Pays for the Ark? Coast Manag., 39(3): 282–295 (2011).
[9] Chang F., Zhou J., Chen P., Chen Y., Jia H., Saad S.M.I., Gao Y., Cao X., Zheng T., Microporous and Mesoporous Materials for Gas Storage and Separation: A Review, AsiaPacific J. Chem. Eng., 8(4): 618–626 (2013).
[10] Zhao C., Chen X., Anthony E.J., Jiang X., Duan L., Wu Y., Dong W., Zhao C., Capturing CO2 in Flue Gas from Fossil Fuel-Fired Power Plants Using Dry Regenerable Alkali Metal-Based Sorbent, Prog. Energy Combust. Sci., 39(6): 515–534
[11] Anderson C., Ho M., Harkin T., Wiley D., Hooper B., Large Scale Economics of a Precipitating Potassium Carbonate CO2 Capture Process for Black Coal Power Generation, Greenh Gases Sci. Technol., 4(1):8–19 (2014).
[12] Ko J-J., Li M-H., Kinetics of Absorption of Carbon Dioxide into Solutions of N-methyldiethanolamine+ Water, Chem. Eng. Sci., 55(19): 4139–4147 (2000).
[13] Ashraf Talesh S.S., Fatemi S., Hashemi S.J., Emrani P., Comparative Study of Carbon Dioxide and Methane Adsorption by Synthesized Fine Particles of SAPO-34 Molecular Sieve, Iran. J. Chem. Chem. Eng. (IJCCE), 29(3) 37–45 (2010).
[14] Nazari Kudahi S., Noorpoor A.R., Mahmoodi N.M., Adsorption Performance Indicator for Power Plant CO2 Capture on Graphene Oxide/TiO2 Nanocomposite, Iran. J. Chem. Chem. Eng. (IJCCE), 38(3):293–307 (2019).
[15] Samanta A., Zhao A., Shimizu G.K.H., Sarkar P., Gupta R., Post-Combustion CO2 Capture Using Solid Sorbents: A Review, Ind. Eng. Chem. Res., 51(4):1438–63 (2011).
[16] Liang Y., Harrison D.P., Gupta R.P., Green D.A., McMichael W.J., Carbon Dioxide Capture Using Dry Sodium-Based Sorbents, Energy & Fuels, 18(2):569–75 (2004).
[18] Lee J.B., Ryu C.K., Baek J-I., Lee J.H., Eom T.H., Kim S.H., Sodium-Based Dry Regenerable Sorbent for Carbon Dioxide Capture from Power Plant Flue Gas, Ind. Eng. Chem. Res., 47(13):4465–72 (2008).
[19] Veselovskaya J.V., Derevschikov V.S., Kardash T.Y., Stonkus O.A., Trubitsina T.A., Okunev A.G., Direct CO2 Capture from Ambient Air Using K2CO3/Al2O3 Composite Sorbent, Int. J. Greenh. Gas. Control., 17:332–40 (2013).
[20] Dong W., Chen X., Yu F., Wu Y., Na2CO3/MgO/Al2O3 Solid Sorbents for Low-Temperature CO2 Capture, Energy & Fuels, 29(2): 968–973 (2015).
[21] Kondakindi R.R., McCumber G., Aleksic S., Whittenberger W., Abraham M.A., Na2CO3-Based Sorbents Coated on Metal Foil: CO2 Capture Performance, Int. J. Greenh. Gas Control., 15:65–9 (2013).
[22] Jaiboon O., Chalermsinsuwan B., Mekasut L., Piumsomboon P., Effect of Flow Patterns/Regimes on CO2 Capture Using K2CO3 Solid Sorbent in Fluidized Bed/Circulating Fluidized Bed, Chem. Eng. J., 219:262–72 (2013).
[23] Dong W., Chen X., Wu Y., Zhao C., Liang C., Liu D., Carbonation Characteristics of Dry Sodium-Based Sorbents for CO2 Capture, Energy & Fuels, 26(9):6040–6 (2012).
[24] Olajire AA., Synthesis of Bare and Functionalized Porous Adsorbent Materials for CO2 Capture, Greenh. Gases Sci. Technol., 7(3):399–459 (2017).
[25] Okunev A.G., Sharonov V.E., Gubar A.V., Danilova I.G., Paukshtis E.A., Moroz E.M., Kriger T.A., Malakhov V.V., Aristov Yu.I., Sorption of Carbon Dioxide by the Composite Sorbent ‘Potassium Carbonate in Porous Matrix’, Russ. Chem. Bull. 52(2):359–63 (2003).
[26] Zhao C., Chen X., Zhao C., CO2 Absorption Using Dry Potassium-Based Sorbents With Different Supports,  Energy & Fuels, 23(9):4683–4687 (2009).
[27] Okunev A.G., Sharonov V.E., Aristov Y.I., Parmon V.N., Sorption of Carbon Dioxide from Wet Gases by K2CO3-in-Porous Matrix: Influence of the Matrix Nature, React. Kinet. Catal. Lett., 71(2):3 55–62 (2000).
[28] Dutcher B., Fan M., Leonard B., Dyar M.D., Tang J., Speicher E.A., Liu P., Zhang Y., Use of Nanoporous FeOOH as a Catalytic Support for NaHCO3 Decomposition Aimed at Reduction of Energy Requirement of Na2CO3/NaHCO3 Based CO2 Separation Technology, J. Phys. Chem. C, 115(31):15532–44 (2011).
[29] Tuwati A., Fan M., Russell A.G., Wang J., Dacosta H.F.M., New CO2 Sorbent Synthesized with Nanoporous TiO(OH)2 and K2CO3, Energy & Fuels, 27(12):7628–36 (2013).
[30] Lee S.C., Choi B.Y., Lee S.J., Jung S.Y., Ryu C.K., Kim J.C., CO2 Absorption and Regeneration Using Na and K Based Sorbents, Stud Surf Sci Catal, 153:527–30 (2004).
[32] Cho M.S., Lee S.C., Chae H.J., Lee J.B., Kim J.C., Preparation and Performance of Potassium-Based Sorbent Using SnO2 for Post-Combustion CO2 Capture, Adsorption, 22(8):1119–27 (2016).
[33] Zhang B-T., Fan M., Bland A.E., CO2 Separation by a New Solid K−Fe Sorbent, Energy & Fuels, 25(4):1919–25 (2011).
[34] Lee S.C., Choi B.Y., Lee T.J., Ryu C.K., Ahn Y.S., Kim J.C., CO2 Absorption and Regeneration of Alkali Metal-Based Solid Sorbents, Catal. Today, 111(3): 385–390 (2006).
[35] Saadatjou N., Jafari A., Sahebdelfar S., Synthesis and Characterization of Ru/Al2O3 Nanocatalyst for Ammonia Synthesis, Iran. J. Chem. Chem. Eng. (IJCCE), 34(1):1–9 (2015).
[36] Kazemi H., Shahhosseini S., Bazyari A., Amiri M., A Study on the Effects of Textural Properties of γ-Al2O3 Support on CO2 Capture Capacity of Na2CO3, Process Saf. Environ. Prot, 138:176–185 (2020).
[37] Sengupta S., Amte V., Dongara R., Das A.K., Bhunia H., Bajpai P.K., Effects of the Adsorbent Preparation Method for CO2 Capture from Flue Gas Using K2CO3/Al2O3 Adsorbents, Energy & Fuels, 29(1):287–297 (2014).
[38] Dinda S., Development of Solid Adsorbent for Carbon Dioxide Capture from Flue Gas, Sep. Purif. Technol., 109:64–71 (2013).
[41] Yi C-K., Jo S-H., Seo Y., Lee J-B., Ryu C-K., Continuous Operation of the Potassium-Based Dry Sorbent CO2 Capture Process with Two Fluidized-Bed Reactors, Int. J. Greenh Gas Control, 1(1): 31–36 (2007).
[42] Zhao C., Chen X., Zhao C., Study on CO2 Capture Using Dry Potassium-Based Sorbents Through Orthogonal Test Method, Int. J. Greenh. Gas Control, 4(4):655–8 (2010).
[43] Zhao C., Guo Y., Li C., Lu S., Carbonation Behavior of K2CO3/AC in Low Reaction Temperature and CO2 Concentration, Chem. Eng. J., 254:524–30 (2014).
[44] Lee S.C., Choi B.Y., Ryu C.K., Ahn Y.S., Lee T.J., Kim J.C., The Effect of Water on the Activation and the CO2 Capture Capacities of Alkali Metal-Based Sorbents, Korean J Chem Eng, 23(3):374–379 (2006).
[45] Yu F., Wu Y., Zhang W., Cai T., Xu Y., Chen X., A Novel Aerogel Sodium‐Based Sorbent for Low Temperature CO2 Capture,  Greenh Gases Sci Technol, 6(4):561–73 (2016).
[47] Wu Y., Chen X., Zhao C., Study on the Failure Mechanism of Potassium-Based Sorbent for CO2 Capture and the Improving Measure, Int. J. Greenh. Gas. Control., 5(5):1184–9 (2011).
[48] Shi X., Xiao H., Lackner K.S., Chen X., Capture CO2 from Ambient Air Using Nanoconfined Ion Hydration, Angew. Chemie., 128(12):4094–4097 (2016).
[49] Luo H., Kanoh H., Fundamentals in CO2 Capture of Na2CO3 Under a Moist Condition, J. Energy Chem., 26(5):972–983 (2017).
[51] Jongartklang N., Chanchairoek S., Piumsomboon P., Chalermsinsuwan B., Correlations of Kinetic Parameters With Various System Operating Conditions for CO2 Sorption Using K2CO3/Al2O3 Solid Sorbent in a Fixed/Fluidized Bed Reactor,
J. Environ. Chem. Eng,. 4(2):1938–1947 (2016).
[52] Levenspiel O., Chemical Reaction Engineering, Ind. Eng. Chem. Re.s, 38(11):4140–4143 (1999).