A DFT Study on Sumanene, Corannulene, and Nanosheet as the Anodes in Li−Ion Batteries

Document Type : Research Article

Authors

1 Department of Chemistry, Tabriz Branch, Islamic Azad University, Tabriz, I.R. IRAN

2 Department of Chemistry, Payame Noor University, Tehran, I.R. IRAN

Abstract

Herein, we studied interactions between the Li neutral atom and Li+ ion and three types of nanoparticles including sumanene (Sum), corannulene (Cor), and nanosheet to obtain the cell voltage (V) for Li−ion batteries (LIBs). Total energies, geometry optimizations, Frontier Molecular Orbital (FMO), and Density of States (DOS) analyses have been obtained using M06−2X level of theory and 6−31+G (d,p) basis set. DFT calculations clarified that the changes of energy adsorption between Li+ ion and nanoparticles, Ead,are in the order: Sheet > Sum−I > Cor > Cor−I > Sum. However, the Vcell for Sum is the highest. The changes in Vcell of Li−ion batteries (LIBs) are in the order: Sum > Sheet > Sum−i > Cor > Cor−i.This study theoretically indicates the possibility of Li as the anode in the battery field.

Keywords

Main Subjects


[1] a) Danuta H., Juliusz U. , Electric Dry Cells and Storage Batteries, US Patent 3,043,896, 1962;
     b) Xu W., Wang J., Ding F., Chen X., Nasybulin E., Zhang Y, Zhang J.−G. Lithium Metal Anodes for Rechargeable Batteries, Energy Environ. Sci., 7: 513–537 (2014).
[2] Siadati S.A., Vessally E., Hosseinian A., Edjlali L., A Density Functional Theory Study on the Interaction Between 5-Fluorouracil Drug and C24 Fullerene. Synthetic Met. 220: 606–611 (2016).
[3] Siadati S.A., Vessally E., Hosseinian A., Edjlali L., Selective Sensing of Ozone and the Chemically Active Gaseous Species of the Troposphere by Using the C20 Fullerene and Graphene Segment,Talanta, 162: 505–510 (2017).
[4] Vessally E., Soleimani–Amiri S., Hosseinian A., Edjlal L., Bekhradnia A., Selective detection of cyanogen halides by BN Nanocluster Physica E, J. Alloys Compd., 87: 308–311 (2017).
[5] Hosseinian A., Saedi Khosroshahi E., Nejati K., Edjlali E., Vessally E., A DFT Study on Graphene, SiC, BN, and AlN Nanosheets as Anodes in Na-Ion Batteries. Mol. Model, .23: 354 (2017).
[6] Nejati K., Hosseinian A., Edjlali L., Vessally E., The Effect of Structural Curvature on the Cell Voltage of BN Nanotube Based Na-Ion Batteries, J. Mol. Liq., 229: 167–171 (2017).
[7] Subalakshmi P., Sivashanmugam A., CuO Nano Hexagons, an Efficient Energy Storage Material for Li- Ion Battery Application, J. Alloys Compd., 690: 523–531(2017).
[8] Nejati K., Hosseinian A., Bekhradnia A., Vessally E.,.Edjlali L, Selective Detection of Cyanogen Halides by BN Nanocluster, J. Mol. Graph. Model., 74: 1–7 (2017).
[9] Jing Y., Zhou Z., Cabrera C.R., Chen Z.F., Graphene, Inorganic Graphene Analogs and their Composites for Lithium Ion Batteries, J. Mater. Chem. A, 2: 12104−12122 (2014).
[10] Hao J.Y., Zheng J.F., Ling F.L., Chen Y.K., Jing H. R., Zhou T.W., Fang L., Zhou M., Strain−engineered Two−Dimensional MoS2 as Anode Material for Performance Enhancement of Li/Na−Ion Batteries, Sci . Rep. 8: 2079-2079 (2018).
[11] Li W., Yang Y.M., Gang Z., Zhang Y.W., Ultrafast and Directional Diffusion of Lithium in Phosphorene for High−Performance Lithium−Ion Battery, Nano Lett., 15: 1691−1697 (2015).
[12] Wang D.S., Gao Y., Liu Y.H., Jin D., Gogotsi Y., Meng X., Du F., Chen G., Wei Y.J., First−Principles calculations of Ti2N and Ti2NT2 (T = O, F, OH) Monolayers as Potential Anode Materials for Lithium−Ion Batteries and Beyond, J. Phys. Chem. C, 121: 13025−13034 (2017).
[15] Guo H., Qian K., Cai A., Tang J. Liu J., Ordered gold Nanoparticle Arrays on the Tip of Silver Wrinkled Structures for Single Molecule Detection, Sensor. Actuat B-Chem., 300: 126846, (2019).
[16] Liu Y., Zhang Q., Xu M., Yuan H., Chen Y., Zhang J., Luo K., Zhang J., You B., Novel and Efficient Synths of Ag-ZnO Nanoparticles for the Sunlight-Induced Photocatalytic Degradation, Appl. Surf. Sci., 476: 632-640 (2019).
[17] Wang X., Wang J., Sun X., Wei S., Cui L., Yang W., Liu J., Hierarchical coral-like NiMoS Nanohybrids as Highly Efficient Bifunctional Electrocatalyst for Overall urea Electrolysis, Nano Res., 11: 988–996 (2018).
[18] Wang M., Yang L., Hu B., Liu J., He L., Jia Q., Song Y., Zhang Z., Bimetallic NiFe Oxide Structures Derived from Hollow Nife Prussian Blue Nanobox for Label-Free Electrochemical Biosensing Adenosine Triphosphate, Biosens. Bioelectron., 113: 16-24 (2018).
[19] Wang Y., Yao M., Ma R., Yuan Q., Yang D., Cui B., Ma C., Liu  M., Hu D., Design strategy of Barium Titanate/Polyvinylidene Fluoride-Based Nanocomposite Films for High Energy Storage, (2020).
[20]  Sakurai H., Daiko T., Hirao T.,  A Synthesis of Sumanene, a Fullerene Fragment, Science, 301: 1878−1878 (2003)
[21] Barth W.E., Lawton R.G., Dibenzo[ghi,mno]fluoranthene , J. Am. Chem. Soc.. 88(2): 380–381(1966).
[22] Lawton, R.G., Barth W.E.. Synthesis of Corannulene. J. Am. Chem. Soc.. 93(7): 1730–1745 (1971).
[23] Chai J.−D., Head−Gordon M .Long-Range Corrected Hybrid Density Functionals with Damped Atom–Atom Dispersion Corrections., Phys. Chem. Chem. Phys., 10: 6615 (2008).
[24] Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., cheeseman J.R., Zakrzewski V.G., Montgomery J.A>, Stratmann J.R.E., Burant J.C., Dapprich S., Millam J.M., Daniels A.D., Kudin K.N., Strain M.C., Farkas O., Tomasi J.V., Barone, Cossi M., Cammi R., Mennucci B., Pomelli C., Adamo C., Clifford S., Ochterski J., Petersson G.A., Ayala P.Y., Cui Q., Morokuma K., Malick D.K., Rabuck A.D., Raghavachari K., Foresman J.B., Cioslowski J., Ortiz J.V., Baboul A.G., Stefanov B.B., Liu G., Liashenko A., Piskorz P., Komaromi I., Gomperts R., Martin R.L., Fox D.J., Keith T., Al-Laham M.A., Peng C.Y., Nanayakkara A., Gonzalez C., Challacombe M., Gill P.M.W., Johnson B., Chen W., Wong M.W., Andres J.L., Gonzalez C., Nead-Gordon M., Replogle E.S., Pople J.A., , Gaussian 98, Revision A.7, Gaussian, Inc., Pittsburgh PA., (2009).
[26] O’Boyle N., Tenderholt A., Langner K., A library for package‐Independent Computational Chemistry Algorithms J. Comput. Chem., 29: 839–845 (2018).
[27] Hidehiro S., Taro D., Hiroyuki S., Toru A., Toshikazu H.,Structural Elucidation of Sumanene and Generation of Its Benzylic Anions, J. Am. Chem. Soc., 127: 11580 −11581, (2005).
[28] Scott, L. T.; Hashemi, M. M.; Bratcher, M. S..Corannulene Bowl−to−Bowl Inversion is Rapid at Room Temperature, J. Am. Chem. Soc., 114(5): 1920–1921 (1992).
[29] Denis P. A., Iribarne F. Alkali Metal Mediated C–C Bond Coupling Reaction, Chem. Phys. Lett., 573: 15−18 (2013).