Study of the Adsorption and Desorption of Zn(II) and Pb(II) on CaF2 Nanoparticles

Document Type : Research Article


1 Centre National des Recherche en Sciences des Matériaux, Laboratoire de Valorisation des Matériaux Utiles (LVMU), Technopole Borj Cedria, BP 73 Soliman 8027, TUNISIA

2 Ecole Nationale Supérieure d'Ingénieurs de Tunis, Laboratoire de Chimie Moléculaire Organique, 1008 Tunis, TUNISIA


This paper explores the adsorptive properties of CaF2 nanoparticles for the removal of Pb(II) and Zn(II) from aqueous solutions and their selective recovery. CaF2 nanoparticles were synthesized by a facile one-step reaction and characterized by N2 physisorption at 77 K, XRD, and TEM. The adsorption of Zn(II) and Pb(II) fits well with Elovich and Langmuir isotherm models, respectively. Kinetic data are well described by the pseudo-second-order model. Our results show that Zn(II) and Pb(II) could be totally and selectively desorbed with HCl solution (0.01 M). The results of the competitive adsorption and desorption of Pb(II) and Zn(II) show that Zn(II) is desorbed before Pb(II) leading to a good separation. The desorption yield reaches 89% for Zn(II) and 95% for Pb(II), which opens the route to regenerate the adsorbent for other cycles.


Main Subjects

[1] Ajam L., Ben Ouezdou M., Sfar Felfoul H., El Mensi R., Characterization of the Tunisian Phosphogypsum and Its Valorization in Clay Bricks, Construction and Building Materials, 23: 3240-3247 (2009).
[2] Tayibi H., Choura M., López F.A., Alguacil F.J, López-Delgado A., Environmental Impact and Management of Phosphogypsium, Journal of Environmental Management, 90: 2377-2386
[3] Mechi N., Khiari R., Ammar M., Elaloui E., Belgacem M.N., Preparation and Application of Tunisian Phosphogypsum as Fillers in Papermaking Made from Prunus Amygdalus and Tamarisk sp., Powder Technology, 312: 287-293 (2017).
[4] El-Didamony H., Ali M.M; Awwad N.S., Fawzy M.M., Attallah M.F., Treatment of Phosphogypsum Waste Using Suitable Organic Extractants, Journal of Radioanalytical and Nuclear Chemistry, 291: 907-914 (2012).
[5] Tayibi H., Gasco C., Navarro N., Lopez-Delgado A., Choura M., Alguacil F.J., López F.A., Radiochemical Characterization of Phosphogypsum for Engineering UseJournal of Environmental Protection,  2:168-174 (2011).
[6] Hentati O., Abrantes N., Caetano A.L., Bouguerra S., Gonçalves F., Römbke J., Pereira R., Phosphogypsum as a Soil Fertilizer: Ecotoxicity of Amended Soil and Elutriates to Bacteria, Invertebrates, Algae and Plants, Journal of Hazardous Materials, 294: 80-89 (2015).
[7] Douahem H., Hammi H., Hamzaoui A., M’nif A., Modeling and Optimization of Phosphogypsum Transformation into Calcium Fluoride Using Experimental Design Methodology, Journal of the Tunisian Chemical Society, 18: 106-113 (2016).
[8] Hajem B., Hamzaoui H., M’nif A., Chemical Interaction Between Industrial Acid Effluents and the Hydrous Medium, Desalination, 206: 154-162 (2007).
[9] Hajem B., M’nif A., Effect of Phosphogypsum Released Solution on Soil and Aquifer Water, Asian Journal of Chemistry, 23: 4805-4809 (2011).
[10] Gunathilake C.,  Kandanapitiye M.S., Dudarko O., Huang S.D., Jaroniec M., Adsorption of Lead ions From Aqueous Phase on Mesoporous Silica with P-Containing Pendant Groups, ACS Applied Materials & Interfaces, 7: 23144-23152 (2015).
[11] Faghihian H., Rasekh M., Removal of Chromate from Aqueous Solution by a Novel Clinoptilolite-Polyanillin Composite, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 33(1): 45-51 (2014).
[12] Prasad M., Saxena S., Amritphale S.S., Adsorption Models for Sorption of Lead and Zinc on Francolite Mineral, Industrial & Engineering Chemistry Research, 41: 105-111 (2002).
[13] Ruedas-Rama M.J., Hall E.A.H., Azamacrocycle Activated Quantum Dot for Zinc Ion Detection, Analytical Chemistry, 80: 8260-8268 (2008).
[14] Gul S., Waheed S., Ahmad A., Khan S.M., Hussain M., Jamil T., Zuber M., Synthesis, Characterization and Permeation Performance of Cellulose Acetate/Polyethylene Glycol-600 Membranes Loaded with Silver Particles for Ultra Low Pressure Reverse Osmosis, Journal of the Taiwan Institute of Chemical Engineers, 57: 129-138 (2015).
[15] Rao G.P., Lu C., Su F., Sorption of Divalent Metal Ions from Aqueous Solution by Carbon Nanotubes:
A Review
, Separation and Purification Technology, 58: 224-231 (2007).
[16] Uddin M.K., A Review on the Adsorption of Heavy Metals by Clay Minerals, with Special Focus
on the Past Decade
, Chemical Engineering Journal, 308: 438-462 (2017).
[17] Sekar M., Sakthi V., Rengaraj S., Kinetics and Equilibrium Adsorption Study of Lead(II) onto Activated Carbon Prepared from Coconut Shell, Journal of Colloid and Interface Science, 279: 307-313 (2004).
[18] Akar T., Kaynak Z., Ulusoy S., Yuvaci D., Ozsari G., Akar S.T., Enhanced Biosorption of Nickel(II) Ions by Silica-Gel-Immobilized Waste Biomass: Biosorption Characteristics in Batch and Dynamic Flow Mode, Journal of Hazardous Materials, 163:1134-1141 (2009).
[19] Ishaq M., Saeed, K., Imtiaz A., Sirraj S., Sohail A., Coal Ash as a Low Cost Adsorbent for the Removal of Xylenol Orange from Aqueous Solution, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 33(1): 53-58 (2014).
[21] Gupta K., Bhattacharya S., Chattopadhyay D., Mukhopadhyay A., Biswas H., Dutta J., Ray N.R., Ghosh U.C., Ceria Associated Manganese Oxide Nanoparticles: Synthesis, Characterization and Arsenic(V) Sorption Behavior, Chemical Engineering Journal, 172: 219-229 (2012).
[22] Ahmadi S. H., Davar P., Manbohi A., Adsorptive Removal of Reactive Orange 122 From Aqueous Solutions by Ionic Liquid Coated Fe3O4 Magnetic Nanoparticles as an Efficient Adsorbent, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 35(1): 63-73 (2016).
[23] Da'na E., Ceria Associated Manganese Oxide Nanoparticles: Synthesis, Characterization and Arsenic(V) Sorption Behavior, Microporous and Mesoporous Materials, 247: 145-157 (2017).
[24] Balistrieri L.S., Murray J.W., The Surface Chemistry of Goethite (Α-Feooh) in Major Ion Seawater. American Journal of Science, 281: 788-806 (1981).
[25] Tahvildari K., Esmaeilipour M., Ghammamy S., Nabipour H., Caf2 Nanoparticles: Synthesis and Characterization, International Journal of Nano Dimension, 22: 269-273 (2012).
[26] Marco-Lozar J.P., Juan-Juan J., Suárez-García F., Cazorla-Amorós D., Linares-Solano A., MOF-5 and Activated Carbons as Adsorbents for Gas Storage, International Journal of Hydrogen Energy, 37: 2370-2381 (2012).
[27] Giudici G.D., Biddau R., D’Incau M., Leoni M., Scardi P., Dissolution of Nanocrystalline Fluorite Powders: An Investigation by XRD and Solution Chemistry, Geochimica et Cosmochimica Acta, 69: 4073-4083 (2005).
[28] Ohashi Y., Nomura M., Tsunashima Y., Ando S., Sugitsue N., Ikeda Y., Tanaka Y., Technique for Recovering Uranium from Sludge Like Uranium-Bearing Wastes Using Hydrochloric Acid, Journal of Nuclear Science and Technology, 51: 251-265 (2014).
[29] Xiang W., Liu J., Chang M., Zheng C., The Adsorption Mechanism of Elemental Mercury on Cuo (110) Surface, Chemical Engineering Journal, 200-202: 91-96 (2012).
[30] Langmuir I., The Constitution and Fundamental Properties of Solids and Liquids Part I. Solids, Journal of the American Chemical Society, 38: 2221-2295 (1916).
[31] Temkin, M.I., Pyzhev, V., Kinetics of Ammonia Synthesis on Promoted Iron Catalyst, Acta Phy. Chem, URSS 12: 327-356, (1940)
[33] Dawodu F.A., Akpomie G.K., Ogbu I.C., Isotherm Modeling on the Equilibrium Sorption of Cadmium(II) from Solution by Agbani Clay, International Journal of Multidisciplinary Sciences And Engineering, 3: 9-14 (2012).
[34] Mohamad Ibrahim M.N., Wan Ngah W.S., Norliyan M.S., Wan Daud W.R., Rafatullah M., Sulaiman O., Hashim R., A Novel Agricultural Waste Adsorbent for the Removal of Lead(II) Ions from Aqueous Solutions, Journal of Hazardous Materials, 182: 377-385 (2010).