Antibacterial Activity of Mesoporous Silica Nanofibers

Document Type : Research Article


1 Department of Chemistry, Faculty of Science, University of Guilan, Rasht, I.R. IRAN

2 Department of Biology, Faculty of Science, University of Guilan, Rasht, I.R. IRAN


In this research, the fabrication of MCM-41 mesoporous material nanofibers by an electrospinning technique was performed. The MCM-41 nanofibers (MCM-41 NFs) as a novel host on the incorporation of silver has been studied in [Ag(NH3)2]NO3 precursor solution through the heat-treatment process. The formation of silver-loaded MCM-41 NFs at various calcinating temperatures were also studied. The silver-containing materials (Ag/MCM-41 NFs) were characterized using Fourier Transform InfraRed (FT-IR) spectroscopy, powder X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), UltraViolet-Visible Diffuse Reflectance Spectroscopy (UV-Vis DRS), and Transmission Electron Microscopy (TEM). The results indicated that both Ag and Ag2O NanoParticles (NPs) were loaded in MCM-41 NFs at different calcinating temperature. Silver compounds with a diameter of 10−15 nm were highly dispersed in the framework of mesoporous silica nanofibers. The results indicated that Ag loading contents on the MCM-41NFs were 10.53 wt%. These Ag/MCM-41 NFs Possess an enhanced antibacterial effective against both Gram-positive and Gram-negative bacteria by preventing the aggregation of silver NPs and continuously releasing silver ions. In general, the silver-containing materials with more Ag2O NPs demonstrated an excellent antibacterial activity. The Minimum Inhibitory Concentrations (MIC) obtained 30 and 60 µg/mLfor the silver-containing MCM-41 NFs with more Ag2O NPs against E. coli and S. aureus, respectively. MCM-41 type nanofibers play an important role in the antibacterial activity of nanocomposites.


Main Subjects

[1] Rai M., Yadav A., Gade A., Silver Nanoparticles as a New Generation of Antimicrobials, Biotechnol. Adv., 27: 76-83 (2009).
[2] Lalueza p., Monzón M., Arruebo M., Santamaría J., Bactericidal Effects of Different Silver-Containing Materials, Mater. Res. Bull., 46:2070–2076 (2011).
[3] Liong M., France B., Bradley K.A., Zink J.I., Antimicrobial Activity of Silver Nanocrystals Encapsulated in Mesoporous Silica Nanoparticles, Adv. Mater., 21:1684–1689 (2009).
[4] Sohrabnezhad Sh., Rassa M., Seifi A., Green Synthesis of Ag Nanoparticles in Montmorillonite, Mater. Let., 168:28–30 (2016).
[6] Chen Ch-Ch., Wu H-H., Huang H.-Y., Ch.-W Liu., Y.-N Chen., Synthesis of High Valence Silver-Loaded Mesoporous Silica with Strong Antibacterial Properties, Int. J. Environ. Res. Pub.  Health, 13: 99-111 (2016).
[7] Aruguete D.M., Kim B., Hochella M.F., Ma Y., Cheng Y., Hoegh A., Liu J., Pruden A Antimicrobial Nanotechnology: Its Potential for the Effective Management of Microbial Drug Resistance and Implications for Research Needs in Microbial Nanotoxicology, Environ. Sci.: Process. Impacts, 15: 93–102 (2013).
[8] Chang Y-H., Lu Y-C., Chou K-S., Enhancement of Photoluminescence of Different Quantum Dots by Ag@SiO2 Core-Shell Nanoparticles, Mater. Res. Bull., 48: 2076–2078 (2013).
[9] Wang J-X., Wen L-X., Wang Zh-H., Chen J-F., Immobilization of Silver on Hollow Silica Nanospheres and Nanotubes and Their Antibacterial Effects, Mater. Chem. Phys., 96: 90–97 (2006).
[10] Kim Y.H., Lee D.K., Cha H.G., Kim C.W., Kang Y.S., Synthesis and Characterization of Antibacterial Ag-SiO2 Nanocomposite, J. Phys. Chem., 111: 3629–3635 (2007).
[11] Sohrabnezhad Sh., Sadeghi A., Matrix Effect of Montmorillonite and MCM-41 Matrices on the Antibacterial Activity of Ag2CO3 Nanoparticles, Appl. Clay. Sci., 105–106: 217–224 (2015).
[12] Tian Y., Qi J., Zhang W., Cai Q., Jiang X., Facile, One-Pot Synthesis, and Antibacterial Activity of Mesoporous Silica Nanoparticles Decorated with Well-Dispersed Silver Nanoparticles, Appl. Mater. Interfaces., 6: 12038−12045 (2014).
[13] Xue X.M., Li F.T., Removal of Cu(II) from Aqueous Solution by Adsorption onto Functionalized SBA-16 Mesoporous Silica, Microporous Mesoporous. Mater., 116:116–122 (2008).
[14] Kawashita M., Tsuneyama S., Miyaji F., Kokubo T., Kozuka H., Yamamoto K., Antibacterial Silver-Containing Silica Glass Prepared by Sol-Gel Method, Biomaterials, 21: 393-398 (2000).
[15] Jeon H.J., Yi S.C., Oh S.G., Preparation and Antibacterial Effects of Ag-SiO2 Thin Films by Sol-Gel Method, Biomaterials, 24: 4921-4928 (2003).
[16] Choma J., Jaroniec M., Burakiewicz-Mortka W., Kloske M., Critical Appraisal of Classical Methods for Determination of Mesopore Size Distributions of MCM-41 Materials, Appl. Surf. Sci., 196: 216-223 (2002).
[17] Lu Q., Gao F., Komarneni S., Mallouk T.E., Ordered SBA-15 Nanorod Arrays Inside a Porous Alumina Membrane, J. Am. Chem. Soc., 126: 8650-8651 (2004).
[18] Bruinsma P.J., Kim A.Y., Liu J., Baskaran S., Mesoporous Silica Synthesized by Solvent Evaporation:  Spun Fibers and Spray-Dried Hollow Spheres, Chem. Mater., 9: 2507-2512 (1997).
[19] Julian-Lopez B., Boissiere C., Chaneac C., Grosso D., Vasseur S., Miraux S., Duguet E., Sanchez C., Mesoporous Maghemite–Organosilica Microspheres: A Promising Route Towards Multifunctional Platforms for Smart Diagnosis and Therapy, J. Mater. Chem., 17: 1563-1569 (2007).
[20] Pega S., Boissiere C., Grosso D., Azaıs T., Chaumonnot A., Sanchez C., Direct Aerosol Synthesis of Large-Pore Amorphous Mesostructured Aluminosilicates with Superior Acid-Catalytic Properties, Angew. Chem. Int. Ed., 48: 2784-2787 (2009).
[21] Balkus Jr K.J., Scott A.S., Gimon-Kinsel M.E., Blanco J.H., Oriented Films of Mesoporous MCM-41 Macroporous Tubules via Pulsed Laser Deposition, Microporous Mesoporous Mater, 38: 97-105 (2000).
[22] Cai Q., Luo ZS., Pang W.Q, Fan Y.W., Chen X.H., Cui F.Z., Dilute Solution Routes to Various Controllable Morphologies of MCM-41 Silica with a Basic Medium, Chem. Mater, 13: 258− 263 (2001).
[23] Chen F., Liu Z., Liu Y., Fang P., Dai Y., Enhanced Adsorption and Photocatalytic Degradation of High Concentration Methylene Blue on Ag2O-Modified TiO2-Based Nanosheet, Chem. Eng. J., 221:283-291 (2013).
[24] Dong H., Chen G., Sun J., Li Ch., Yu Y., Chen D., A Novel High-Efficiency Visible-Light Sensitive Ag2CO3 Photocatalyst with Universal Photodegradation Performances: Simple synthesis, Reaction Mechanism and First-Principles Study, Appl. Catal. B, 134-135: 46-54 (2013).
[25] Lewis G.N., Concerning Silver Oxide and Silver Suboxide, J. Am. Chem. Soc., 28: 139-158 (1906).
[26] Jabariyan Sh., Zanjanchi M.A., A Simple and Fast Sonication Procedure to Remove Surfactant Templates from Mesoporous MCM-41. Ultrason. Sonochem., 19:1087-1093 (2012).
[27] Zhou W., Liu H., Wang J., Liu D., Du G., Cui J., Ag2O/TiO2 Nanobelts Heterostructure with Enhanced Ultraviolet and Visible Photocatalytic Activity. Appl. Mater. Interfaces, 2: 2385-2392 (2010).
[28] Xu X., Shen X., Zhou H., Qiu D., Zhu G., Chen K., Facile Microwave-Assisted Synthesis of Monodispersed Ball-Like Ag@ AgBr Photocatalyst with High Activity and Durability, Appl. Catal., 455: 183-192 (2013).
[29] Xiu Z.M., Zhang Q.B., Puppala H.L., Colvin V.L., Alvarez P.J.J., Negligible Particle-Specific Antibacterial Activity of Silver Nanoparticles. Nano. Lett., 12: 4271−4275 (2012).
[30] Feng Q.L., Wu J., Chen G.Q., Cui F.Z., Kim T.N., Kim J.O., A Mechanistic Study of the Antibacterial Effect of Silver Ions on Escherichia coli and Staphylococcus Aureus, J. Biomed. Mater. Res., 52: 662−668 (2000).
[31] Egger S., Lehmann R.P., Height M.J., Loessner M.J., Schuppler M., Antimicrobial Properties of a Novel Silver–Silica Nanocomposite Material, Appl. Environ. Microbio., 75: 2973–2976 (2009).
[32]Ma Z., Ji H., Tan D., Teng Y., Dong G., Zhou J., Qiu J., Zhang M., Silver Nanoparticles Decorated, Flexible SiO2 Nanofibers with Long-Term Antibacterial Effect as Reusable Wound Cover. Colloids Surf. A., 387:57−64 (2011).
[33] Moritz M., Geszke-Moritz M., The Newest Achievements in Synthesis, Immobilization and Practical Applications of Antibacterial Nanoparticles, Chem. Eng. J., 228: 596–613 (2013).
[34] Zhang W., Yao Y., Sullivan N., Chen Y., Modeling the Primary Size Effects of Citrate-Coated Silver Nanoparticles on Their Ion Release Kinetics. Environ. Sci. Technol., 45:4422−4428 (2011).
[35] Li L., Wang H., Antibacterial Agents: Enzyme-Coated Mesoporous Silica Nanoparticles as Efficient Antibacterial Agents In Vivo. Adv. Healthcare Mater., 2:1298−1298 (2013).
[36] Zienkiewicz Strzałka M., Pasieczna Patkowska S., Kozak M., Pikus S., Silver Nanoparticles Incorporated onto Ordered Mesoporous Silica from Tollen’s Reagent. Appl. Surf. Sci., 266: 337−343 (2013).
[37] Pandiyarajan T., Udayabhaskar R., Vignesh S., Arthur James R., Karthikeyan B., Synthesis and Concentration Dependent Antibacterial Activities of CuO Nanoflakes, Mater. Sci. Eng. C, 33:2020–2024 (2013).
[38] Shen W., Feng L., Feng H., Kong Z., Guo M., Ultrafine silver(II) Oxide Particles Decorated Porous Ceramic Composites for Water Treatment, Chem. Eng. J., 175:592–599 (2011).
[39] Lalueza P., Monzón M., Arruebo M., Santamaría J., Bactericidal Effects of Different Silver-Containing Materials, Mater. Res. Bull., 46:2070–2076 (2011).