Theoretical Investigation of Entropy Generation in Axisymmetric Stagnation Point Flow of Nanofluid Impinging on the Cylinder Axes with Constant Wall Heat Flux and Uniform Transpiration

Document Type : Research Article


Department of Mechanical Engineering, Shahrood Branch, Islamic Azad University, Shahrood, I.R. IRAN


Dimensionless temperature, Nusselt number, and entropy generation in stagnation flow of incompressible nanofluid impinging on the infinite cylinder with uniform suction and blowing have been presented in this study. The initial stream rate of the steady free stream is k. A similar solution of Navier-Stokes and energy equations has been presented. These equations are simplified by implementing appropriate transformations introduced in this research. The governing equations are solved where the heat flux at the cylinder’s wall is constant. All these solutions are acceptable for Reynolds numbers of 0.1-1000, various dimensionless surface diffusion, and specific volume fractions of nanoparticles where a is the cylinder radius and is the kinematic viscosity of the base fluid. The results show that for all Reynolds numbers, diffusion depth of radial and axial components of velocity field and wall shear stress increases as a result of the decline in nanoparticles volume fraction and growth in surface diffusion. Moreover, an increase in nanoparticle volume fraction and surface suction raises the heat transfer coefficient and Nusselt number. Also, the greatest amount of entropy generation is calculated.


Main Subjects

[1] Choi S.U.S., Eastman J.A., "Enhancing Thermal Conductivity of Fluid with Nanoparticles", ASME Int. Mech. Eng. Cong. Expo., November 12-17, San Francisco, CA (1995).
[2] Kuznetsov A.V., Nield D.A., Natural Convection Boundary-Layer Flow of a Nanofluid Past a Vertical Plate, Int. J. Thermal Sci., 49(2): 243–247 (2010).
[3] Kuznetsov A. V., Nield D.A., Thermal Instability in a Porous Medium Layer Saturated by a Nanofluid: Brinkman Model, Transp. Porous Media, 81(3): 409–422 (2010).
[4] Khan W.A., Pop I., Boundary-Layer Flow of a Nanofluid Past a Stretching Sheet, Int. J. Heat Mass Transfer, 53(11-12): 2477–2483 (2010).
[5] Hiemenz K., Die Grenzchicht an Einem in Den Gleichformingen Flussigkeitsstrom Eingetauchten Geraden Kreiszylinder, Dingler,s Polytechn. Journal, 326: 391-393 (1911).
[6] Homann F.Z., Der Einfluss Grosser Zahighkeit bei der Strmung um Den Zylinder und um Die Kugel, Zeitschrift für Angewandte Mathematik und Mechanik, 16: 153-164 (1936).
[8] Davey A., Boundary Layer Flow at a Saddle Point of Attachment, J. Fluid Mech., 10(4): 593-610 (1961).
[9] Wang C., Axisymmetric Stagnation Flow on a Cylinder, Q. Appl. Math., 32(2): 207-213 (1974).
[10] Gorla R.S.R., Nonsimilar Axisymmetric Stagnation Flow on a Moving Cylinder, Int. J. Eng. Sci., 16(6): 397-400 (1978).
[12] Gorla R.S.R., Heat Transfer in Axisymmetric Stagnation Flow on a Cylinder, Appl. Sci. Res., 32(5): 541-553 (1976).
[13] Gorla R.S.R., Unsteady Viscous Flow in the vicinity of an Axisymmetric Stagnation-Point on a Cylinder, Int. J. Eng. Sci., 17(1): 87-93 (1979).
[14] Cunning G.M., Davis A.M.J., Weidman P.D., Radial Stagnation Flow on a Rotating Cylinder with Uniform Transpiration, J. Eng. Math., 33(2): 113-128 (1998).
[15] Takhar H.S., Chamkha A.J., Nath G., Unsteady Axisymmetric Stagnation-Point Flow of a Viscous Fluid on a Cylinder, Int. J. Eng. Sci., 37(15): 1943-1957 (1999).
[19] Abbasi A. S., Rahimi A. B., Non-Axisymmetric Three-Dimensional Stagnation-Point Flow and Heat Transfer on a Flat Plate, J. Fluids Eng., 131(7): 074501.1– 074501.5 (2009).
[20] Abbasi A. S., Rahimi A. B., Three-Dimensional Stagnation- Point Flow and Heat Transfer on a Flat Plate with Transpiration, J. Thermophys. Heat Transfer, 23(3): 513–521 (2009).
[21] Abbasi A.S., Rahimi A.B., Niazman H., Exact Solution of Three-Dimensional Unsteady Stagnation Flow on a Heated Plate, J. Thermophys. Heat Transfer, 25(1): 55–58 (2011).
[22] Abbasi A.S., Rahimi A.B., Investigation of Two-Dimensional Stagnation-Point Flow and Heat Transfer Impinging on a Flat Plate, J. Heat Transfer, 134(6): 064501-1-o64501-5 (2012).
[23] Mohammadiun H., Rahimi A.B., Stagnation-Point Flow and Heat Transfer of a Viscous, Compressible Fluid on a Cylinder, J. Thermophys. Heat Transfer, 26(3): 494-502 (2012).
[24] Mohammadiun H., Rahimi A.B., Kianifar A., Axisymmetric Stagnation-Point Flow and Heat Transfer of a Viscous Compressible Fluid on a Cylinder with Constant Heat Flux, Sci. Iran., Trans. B, 20(1): 185–194 (2013).
[25] Rahimi A.B., Mohammadiun H., Mohammadiun M., Axisymmetric Stagnation Flow and Heat Transfer of a Compressible Fluid Impinging on a Cylinder Moving Axially, J. Heat Transfer, 138(2): 022201-1-022201-9 (2016).
[26] Bejan A., Second-Law Analysis in Heat Transfer and Thermal Design, Adv. Heat Transfer, 15: 1–58 (1982).
[27] Bejan A., "Entropy Generation Minimization", CRC Press, Boca Raton, Florida (1996).
[28] Bejan A.,  A Study of Entropy Generation in Fundamental Convective Heat Transfer, J. Heat Transfer, 101(4): 718–725 (1979).
[29] Bejan A., The Thermodynamic Design of Heat and Mass Transfer Processes and Devices, Int. J. Heat Fluid Flow, 8(4): 259-276 (1987).
[30] Mahmud S., Tasnim S. H., Mamun H. A. A., Thermodynamic Analysis of Mixed Convection in a Channel with Transverse Hydromagnetic Effect, In. J. Therm. Sci., 42(8): 731–740 (2003).
[33] Aïboud-Saouli S., Saouli S., Settou N., Meza N., Second-Law Analysis of Laminar Fluid Flow in a Heated Channel with Hydro-Magnetic and Viscous Dissipation Effects, Appl. Energy, 84(3): 279–289 (2007).
[34] Aïboud-Saouli S., Saouli S., Entropy Analysis for Viscoelastic Magnetohydrodynamic Flow over a Stretching Surface, International Journal of Non-Linear Mechanics, 45(5): 482–489 (2010).
[35] Rezaiguia I., Mahfoud K., Kamel T., Belghar N.,. Saouli S., Numerical Simulation of the Entropy Generation in a Fluid in Forced Convection on a Plane Surface While Using the Method of Runge-Kutta, Eur. J. Sci. Res., 42(4): 637-643 (2010).
[36] Hirschfelder J. O., Curtiss C. F., Bird, R.B, "Molecular Theory of Gases and Liquids", John Wiley & Sons, Inc., New York (1954).
[37] San J.Y., Worek W.M., Lavan Z., Entropy Generation in Combined Heat and Mass Transfer, Int. J. Heat Mass Trans., 30(7): 1359-1369 (1987).
[39] Rashidi O., Mohammadi M.M., Abbasbandy F., Alhuthali, M. S., Entropy Generation Analysis for Stagnation Point Flow in a Porous Medium over a Permeable Stretching Surface, J. Appl. Fluid Mech., 8(4): 753-765 (2015).
[40] Bejan A., Ledezma G.A., Thermodynamic Optimization of Cooling Techniques for Electronic Packages, Int. J. Heat Mass Trans., 39(6): 1213–1221 (1996).
[41] Lin W. W., Lee D.J., Second Law Analysis of a Pin Fin Array Under Cross-Flow, Int. J. Heat Mass Trans., 40(8): 1937–1945 (1997).
[42] Sasikumar M., Balaji C., Optimization of Convective Fin Systems: A Holistic Approach, Heat Mass Transfer, 39(1): 57–68 (2002).
[43] Rashidi M.M., Mahmud S., Freidoonimehr N., Rostami B., Analysis of Entropy Generation in an MHD Flow over a Rotating Porous Disk with Variable Physical Properties, Int. J. Exergy, 16(4): 481-503 (2015).
[44] Malvandi A., Ganji D.D., Hedayati F., Kaffash M.H., Jamshidi M., Series Solution of Entropy Generation Toward an Isothermal Flat Plate, Thermal Science, 16(5): 1289–1295 (2012).
[45] Freidoonimehr F., Rahimi A.B., Exact-Solution of Entropy Generation for MHD Nanofluid Flow Induced by a Stretching/Shrinking Sheet with Transpiration: Dual solution, Adv. Powder Technol., 28(2): 671-685 (2017).
[47] Bejan M., "Entropy Generation Through Heat and Fluid Flow", John Wiley & Sons, Inc., New York, (1982).
[48] Einstein A, Eine neue Bestimmung der Molekuldimensionen  , Ann. Phys. Leipzig 19: 289–306 (1906).
[49] Bilal M., Sharma S., Aneja M., Cattaneo-Christov Heat Flux Model of Eyring Powell Fluid Along with Convective Boundary Conditions, Iran. J. Chem. Chem. Eng. (IJCCE), 40(3): 971-979 (2020).
[50] Nematollahzadeh A., Jangara H., Exact Analytical and Numerical Solutions for Convective Heat Transfer in a Semi-Spherical Extended Surface with Regular Singular Points, Iran. J. Chem. Chem. Eng. (IJCCE), 40(3): 980-989 (2020).
 [51] Tiwari A. K., Pradyumna G., Jahar S., Investigation of Thermal Conductivity and Viscosity of Nanofluids, J. Environ. Res. Develop., 7(2): 768-777 (2012).
 [52] Rahimi A.B., Mohammadiun H., Mohammadiun M., Self-Similar Solution of Radial Stagnation Point Flow and Heat Transfer of a Viscous, Compressible Fluid Impinging on a Rotating Cylinder, Iran. J. Sci. Technol. Trans. Mech. Eng., 43 (1): S141-S153 (2019).
[54] Nasir N.A. M., Ishak A., Pop I., Stagnation-Point Flow and Heat Transfer Past a Permeable Quadratically Stretching/Shrinking Sheet, Chin. J. Phys., 55(5): 2081-2091 (2017).
[55] Thakur P., Tiwari N., Chhabra R.P., Momentum and Heat transfer from an Asymmetrically Confined Rotating Cylinder in a Power-Law Fluid, Int. J. Therm. Sci., 137: 410–430 (2019).
[57] Ashraf M., Ali K., Numerical Simulation of Micropolar Flow in a Channel under Osciatory Pressure    Gradient, Iran. J. Chem. Chem. Eng. (IJCCE), 39 (2): 261-270 (2020).
[58] Salawu S.O., Hassan A.R., Abolarinwa A., Oladejo N.K., Thermal Stability and Entropy Generation of Unsteady Reactive Hydromagnetic Powell-Eyring Fluid with Variable Electrical and Thermal Conductivities, Alexandria Eng. J., 58(2): 519-529 (2019).
[59] Amirsom N, Uddin M. J, and Izani A, Electro Magneto Convective Stagnation Point Flow of Bionanofluid with Melting Heat Transfer and Stefan Blowing, Thermal Science, 22(6B): 2871-2881 (2018).
[60] Madelatparvar M., Hosseini Salami M., Abbasi F., Numerical Study on Parameters Affecting the Structure of Scaffolds Prepared by Freeze-Drying Method, Iran. J. Chem. Chem. Eng. (IJCCE), 39(2): 271-286 (2020).
[61] Safaei H., Sohrabi M., Falamaki C., Royaee S. J., A New Mathematical Model for the Prediction of Internal Recirculation in Impinging Streams Reactors, Iran. J. Chem. Chem. Eng. (IJCCE), 39(2): 249-259 (2020).
[62] Hussain Z., Zaman M., Nadeem M., Ullah A., CFD Modeling of the Feed Distribution System of a Gas-Solid Reactor, Iran. J. Chem. Chem. Eng. (IJCCE), 38(1): 233-242 (2019).
[63] Habibi M. R., Amini M., Arefmanesh A., Ghasemikafrudi E., Effects of Viscosity Variations on Buoyancy-Driven Flow from a Horizontal Circular Cylinder Immersed in Al2O3-Water Nanofluid, Iran. J. Chem. Chem. Eng. (IJCCE), 38(1): 213-232 (2019).