Simulation Silicon Surfactant Rule on Polyurethane Foaming Reactions

Document Type : Research Article


1 Department of Chemical Engineering, University of Missouri-Columbia, W2033 Lafferre Hall, Missouri 65211, COLUMBIA

2 Materials Engineering Department, College of Engineering, Mostansiriyah University, Baghdad, IRAQ


During the foaming process of polyurethane, the surfactant plays a significant role in stabilizing and setting the foam. Simulation this role helps in better predicting the final performance and optimum foam formulation. The relation between the amount of surfactant added to the formulation and the surface tension was studied experimentally by using the capillary rise method to develop a simulation model. This model was aimed to study the critical role of the mechanism that surfactants have in the initial stages of gel formation and through the point where viscosity is high enough to create resistance to support the foams. Bubble sizes were calculated based on the number of nucleation sites, gas generation rate, surface tension, and inner bubble pressure. Since important properties of polyurethane foam, such as compressive strength, closed-cell content, and thermal conductivity can be related to the bubble sizes, this model can be used to predict foam performance and to develop new foam formulations.


Main Subjects

[1] Al-Moameri H.H., Hassan G., Jaber B., Simulation Physical and Chemical Blowing Agents for Polyurethane Foam Production. IOP Conference Series: Materials Science and Engineering. 518: 062001 (2019).
[2] Al-Moameri H., Jaf L., Suppes G.J., Viscosity-Dependent Frequency Factor for Modeling Polymerization Kinetics, RSC Advances. 7(43): 26583-26592 (2017).
[3] Al-Moameri H.H., Jaf L.A., Suppes G.J., Simulation Approach to Learning Polymer Science. J. Chem. Educ. 95(9): 1554-1561 (2018).
[4] Al-Moameri H.H., Nabhan B.J., Wasmi M. T., Abdulrehman M.A., Impact of Blowing Agent-Blends on Polyurethane Foams Thermal and Mechanical Properties, AIP Conference Proceedings. 2213(1): 020177 (2020).
[5] Ganjeh-Anzabi P., Hadadi-Asl V., Salami-Kaljahi M., Roghani-Mamaqani H., A New Approach for Monte Carlo Simulation of RAFT Polymerization, Iran. J. Chem. Chem. Eng. (IJCCE), 31(3): 75-84 (2012).
[6] Baser S.A., Khakhar D.V., Modeling of the Dynamics of Water and R-11 Blown Polyurethane Foam Formation, Polymer Engineering and Science, 34(8): 642 (1994).
[7] Baser S.A., Khakhar D.V., Modeling of the Dynamics of R-11 Blown Polyurethane Foam Formation. Polymer Engineering and Science. 34(8): 632-641 (1994).
[8] Harikrishnan G., Khakhar D.V., Modeling the Dynamics of Reactive Foaming and Film Thinning in Polyurethane Foams, AIChE Journal. 56(2): 522-530 (2010).
[9] Tesser R., Di Serio M., Sclafani A., Santacesaria E., Modeling of Polyurethane Foam Formation, J. Appl. Polym. Sci., 92(3): 1875-1886 (2004).
[10] Mahmoudian M., Nosratzadegan K., Azarnia J., Esfadeh A., Ghasemi Kochameshki M., Shokri A., Modeling of Living Cationic Ring-Opening Polymerization of Cyclic Ethers: Active Chain End versus Activated Monomer Mechanism. Iran. J. Chem. Chem. Eng. (IJCCE), 39(5): 95- 110 (2020).
[11] Zhang X.D., Macosko C.W., Davis H.T., Nikolov A.D., Wasan D.T., Role of Silicone Surfactant in Flexible Polyurethane Foam, J. Colloid Interface Sci., 215(2): 270-279 (1999).
[12] Al-Moameri H., Ghoreishi R., Suppes G., Impact of Inter- and Intra-Molecular Movements on Thermoset Polymerization Reactions, Chemical Engineering Science. 161: 14-23 (2017).
[13] Al-Moameri H., Ghoreishi R., Zhao Y., Suppes G.J., Impact of the Maximum Foam Reaction Temperature on Reducing Foam Shrinkage, RSC Adv. 5(22): 17171-17178 (2015).
[15] Al-Moameri H., Zhao Y., Ghoreishi R., Suppes G.J., Simulation of Liquid Physical Blowing Agents for Forming Rigid Urethane Foams, J. Appl. Polym. Sci. 132(34): 7-     (2015).
[16] Al-Moameri H., Zhao Y., Ghoreishi R., Suppes G.J., Simulation Blowing Agent Performance, Cell Morphology, and Cell Pressure in Rigid Polyurethane Foams. Ind Eng Chem Res. 55(8): 2336-2344 (2016).
[17] Ghafoor Mohseni P., Shahrokhi M., Abedini H., Simulation, Optimization & Control of Styrene Bulk Polymerization in a Tubular Reactor, Iran. J. Chem. Chem. Eng.(IJCCE), 32(4): 69-79 (2013).
[18] Hill, R.M., Silicone Surfactants - New Developments, Curr. Opin. Colloid Interface Sci. 7(5-6): 255-261 (2002).
[19] Yasunaga K., Neff R.A., Zhang X.D., Macosko C.W., Study of Cell Opening in Flexible Polyurethane Foam. J. Cell Plast. 32(5): 427-447 (1996).
[20] Kanner B., Decker T.G., Urethane Foam Formation - Role of the Silicone Surfactant. J. Cell Plast., 5(1):
32-39 (1969).
[21] Al-Moameri H., Low Shrinkage Sustainable Bio-Based Polyol for Rigid Polyurethane Foam Production, J. of Eng. and Sust. Dev., 22(2):   -   (2018).
[22] Burlatsky S.F., Atrazhev V.V., Dmitriev D.V., Sultanov V.I., Timokhina E.N., Ugolkova E.A., Tulyani S., Vincitore A., Surface Tension Model For Surfactant Solutions at the Critical Micelle Concentration, J. Colloid Interface Sci., 393(1):
151-160 (2013).
[23] Abusaidi H., Ghaieni H.R., Ghorbani M., Influences of NCO/OH and triol/diol Ratios on the Mechanical Properties of Nitro-HTPB Based Polyurethane Elastomers, Iran. J. Chem. Chem. Eng. (IJCCE), 36(5): 55-63 (2017).
[24] Hill R.M., Silicone Surfactants, Taylor & Francis (1999).
[25] Favelukis M., Albalak R.J., Bubble Growth in Viscous Newtonian and Non-Newtonian Liquids, Chem. Eng. J. 63(3): 149-155 (1996).
[26] Zhao Y., Gordon M.J., Tekeei A., Hsieh F.H., Suppes G.J., Modeling Reaction Kinetics of Rigid Polyurethane Foaming Process, J. Appl. Polym. Sci. 130(2): 1131-1138 (2013).
[27] Ghoreishi R., Zhao Y., Suppes G.J., Reaction Modeling of Urethane Polyols Using Fraction Primary Secondary and Hindered-Secondary Hydroxyl Content, J. Appl. Polym. Sci. 131(12):   -   (2014).
[28] Zhao Y., Zhong F., Tekeei A., Suppes G.J., Modeling Impact of Catalyst Loading on Polyurethane Foam Polymerization, Applied Catalysis A: General., 469: 229-238 (2014).
[29] Nguyen A.V., Historical Note on the Stefan-Reynolds Equations, J. Colloid Interface Sci., 231(1): 195-    (2000).
[30] Ruckenstein E., Sharma A., A New Mechanism of Film Thinning: Enhancement of Reynolds' Velocity By Surface Waves. J. Colloid Interface Sci. 119(1): 1-13 (1987).
[31] Radoev B.P., Scheludko A.D., Manev E.D., Critical Thickness of Thin Liquid Films: Theory and Experiment, J. Colloid Interface Sci. 95(1): 254-265 (1983).
[32] Talaia M.A.R., Terminal Velocity of a Bubble Rise in a Liquid Column, World Academy of Science, Engineering and Technology, 28: 264-268 (2007).