Advanced Oxidation Process as a Green Technology for Dyes Removal from Wastewater: A Review

Document Type : Review Article


1 Department of Chemistry, Faculty of Sciences, University of Guilan, Rasht, I.R. IRAN

2 Department of Water and Environmental Engineering, Caspian Sea Basin Research Center, University of Guilan, Rasht, I.R. IRAN

3 Department of Chemical Engineering, Faculty of Engineering, University of Guilan, Rasht, I.R. IRAN


The combination of green chemistry and green engineering is needed for the production of minimum waste, renewable sources, increasing utilization of raw materials, the use of simpler and safer products, and novel technologies. The use of novel cleaner technologies leads to effective production in chemical industries. The dyes involve a complex structure, recalcitrant nature, and more intermediates. The generation of oxidative species with higher yields is obtained by advanced oxidation processes as a green and powerful treatment technology. These processes are effective, inexpensive, and eco-friendly methods for decaying toxic pollutants. The AOPs are classified as non-photochemical and photochemical processes. There are included various technologies such as ozonation, Fenton oxidation, wet air oxidation, electrochemical oxidation, and photocatalytic oxidation. The production of highly reactive free radicals is the main purpose of the AOPs process. The generation of free radical increases by the combination of two or more AOPs processes that leads to higher oxidation rates. This study was aimed to present the various attempts for degradation dyes in textile wastewater using the diverse advanced oxidation processes.


Main Subjects

[1] Badami B.V., Concept of Green Chemistry, Resonance, 13(11): 1041-1048 (2008).
[2] Anastas P., Warner J.C., “Green Chemistry: Theory and Practice”, Oxford University Press, Oxford (1998).
[3] Anastas P.T., Kirchhoff M.M., Origins, Current Status, and Future Challenges of Green Chemistry, Acc. Chem. Res, 35(9): 686-694 (2002).
[4] Clark J.H., Green Chemistry: Challenges and Opportunities, Green Chem, 1-8 (1999).
[5] Deshpande B.D., Agrawal P.S., Yenkie M.K.N., Dhoble J.S., Prospective of Nanotechnology in Degradation of Waste Water: A New Challenges, Nano-Struct. Nano-Objects, 22: 100442- (2020).
[6] Agrawal P.S., Kale, S., Mangrulkar, V., A Review on Cartridge Ink as an Adsorbent to Treat Waste Water; Our Heritage ISSN: 0474-9030, 68(30): (2020).
[7] Anastas P.T., Williamson T.C., “Green Chemistry: Designing Chemistry for the Environment”, American Chemical Series Books, Washington, DC (1996).
[8] Anastas P, Eghbali N., Green Chemistry: Principles and Practice, Chem. Soc. Rev, 39: 301-312 (2010).
[9] Clark J.H., “Green Chemistry and Environmentally Friendly Technologies, Green Separation Processes”. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2005).
[10] Manahan S., “Green Chemistry and the Ten Commandments of Sustainability”, 3rd ed. ChemChar Research, Inc Publishers, Columbia, Missouri (2010).
[11] Anastas P.T., “Clean Solvent Alternative Media for Chemical Reactions and Processing”, ACS Symposium Series 819, Washington, DC (2002).
[12] Sheldon R.A., Green Solvents for Sustainable Organic Synthesis: State of the Art, Green Chem., 7: 267-278 (2005).
[13] Constable D.J.C., Curzons A.D., Cunningham V.L., Metrics to ‘Green’ Chemistry-Which Are the Best? Green Chem, 4: 521-527 (2002).
[14] Chiappe C., “Eco-Friendly Synthesis of Fine Chemicals, Task-specific Ionic Liquids for Fine Chemicals”, Royal Society of Chemistry (2009).
[15] Kerton F.M., “Alternative Solvents for Green Chemistry, RSC Green Chemistry Book Series”, Royal Society of Chemistry (2009).
[17] Breslow R., “The Principles and Reasons for Using Water as a Solvent for Green Chemistry,” Eds. Paul Anastas and Chao-Jun Li, Wiley-VCH, Weinheim Germany, 1-29 (2010).
[18] Cole-Hamilton D.J., Tooze Robert P., “Catalyst Separation Recovery and Recycling”, Chemistry and Process Design”, Springer, Netherlands (2006).
[19] Welton T., Room-temperature Ionic Liquids. Solvents for Synthesis and Catalysis, Chem. Rev, 99: 2071-2084 (1999).
[20] Plechkova N.V., Seddon K.R., “In Methods and Reagents for Green Chemistry-Ionic Liquids: ‘‘Designer’’ Solvents for Green Chemistry”, John Wiley & Sons Inc, Hoboken, 105-130 (2007).
[21] Wasserscheid P., Welton T., “In Ionic Liquids in Synthesis”, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2007).
[22] Vekariya R.L., A Review of Ionic Liquids: Applications Towards Catalytic Organic Transformations, J. Mol. Liq., 227: 44-60 (2017).
[23] Shirini F., Rad-Moghadam K., Akbari-Dadamahaleh S., Application of ionic Liquids in Multicomponent Reactions, Green Solvents II, Springer, 289-334 (2012).
[24] Shirini F., Abedini M., Seddighi M., Goli Jolodar O., Safarpoor Nikoo Langroodi M., Zamani S., Introduction of a new bi-SO3H Ionic Liquid Based on 2,2′-Bipyridine as a Novel Catalyst for the Synthesis of Various Xanthene Derivatives, RSC Adv., 4(108): 63526-63532 (2014).
[25] Shirini F., Abedini M., Mahmoodi N., Biglari M., Safarpoor Langroodi M., Introduction of a New Ionic Liquid Catalyst for the Trimethylsilyl and Tetrahydropyranyl Protection of Alcohols, Phosphorus, Sulfur Silicon Relat. Elem, 190(11): 1912-1921 (2015).
[26] Rad-Moghadam K., Sharifi-Kiasaraie M., Azimi S.C., Synthesis of 4-substituted pyrano[4,3-b]pyran-2,5-Diones in an Ionic Liquid, Tetrahedron, 68: 6472-6476 (2012).
[28] Rad-Moghadam K., Azimi S.C., Abbaspour-Gilandeh E., Synthesis of Novel Pyrano[3,2-c]quinoline-2,5-Diones Using an Acidic Ionic Liquid Catalyst, Tetrahedron Lett, 54: 4633-4636 (2013).
[29] Azimi S.C, Rad-Moghadam K., [BMIm]BF4-LiCl as an Effective Catalytic System for the Synthesis of Dicoumarols, Iran. Chem. Commun, 3: 356-366 (2015).
[31] Lucas M.S., Peres J.A., Decolorization of the Azo Dye Reactive Black 5 by Fenton and Photo-Fenton Oxidation, Dyes Pigm, 71(3): 236-244 (2006).
[32] Chatwal G.R., “Synthetic Dyes”. Himalaya Publishing House Pvt. Ltd (2009).
[33] Hunger K., “Industrial Dyes: Chemistry, Properties, Applications”. Wiley-VCH. Verlag GmbH & Co. KGaA, Weinheim (2007).
[34] Hua L., Ma H., Zhang L., Degradation Process Analysis of the Azo Dyes by Catalytic Wet Air Oxidation with Catalyst CuO/γ-Al2O3, Chemosphere, 90(2): 143-149 (2013).
[36] Kusic H., Koprivanac N., Srsan L., Azo Dye Degradation Using Fenton Type Processes Assisted by UV Irradiation: A Kinetic Study, J. Photochem. Photobio.l A: Chem, 181: 195-202 (2006).
[37] Sharma S.K., “Green Chemistry for Dyes Removal from Wastewater, Research Trends and Applications”, John Wiley & Sons Inc. (2015).
[38] Chaudhari K., Bhatt V., Bhargava A., Seshadri S., Combinational System for the Treatment of Textile Waste Water: A Future Perspective, Asian J. Water Environ. Pollut, 8: 127-136 (2011).
[39] Azimi S.C., Shirini F, Pendashteh A.R., Evaluation of COD and Turbidity Removal from Woodchips Wastewater Using Biologically Sequenced Batch Reactor, Process Saf. Environ. Prot. 128: 211-227 (2019).
[40] Ebrahimzadeh M.A., Naghizadeh A., Amiri O., Shirzadi-Ahodashtia M., Mortazavi-Derazkola S., Green and Facile Synthesis of Ag Nanoparticles Using Crataegus Pentagyna Fruit Extract (CP-AgNPs) for Organic Pollution Dyes Degradation and Antibacterial Application, Bioorg. Chem., 94: 103425 (2020).
[41] Naghizadeh A., Nabizadeh R., Removal of Reactive Blue 29 Dye by Adsorption on Modified Chitosan in Presence of Hydrogen Peroxide, Environ. Prot. Eng, 42(1): 149-168 (2016).
[42] Kamranifar M., Naghizadeh A., Montmorillonite Nanoparticles in Removal of Textile Dyes from Aqueous Solutions: Study of Kinetics and Thermodynamics, Iran. J. Chem. Chem. Eng. (IJCCE), 36(6): 127-137 (2017).
[43] Zhao V., Zhai J.Y., Chen J., Bian W., Li J., Equilibrium and Kinetics Study of Reactive Dyes Removal from Aqueous Solutions by Bentonite Nanoparticles, Desalin. Water Treat, 79: 329-377 (2017).
[45] Dehghani M.H., Naghizadeh A., Rashidi A., Derakhshani E., Adsorption of Reactive Blue 29 Dye from Aqueous Solution by Multiwall Carbon Nanotubes, Desalin. Water Treat, 51(40-42): 7655-7662 (2013).
[46] Bergamini R.B.M., Azevedo E.B., Araujo L.R.R., Heterogeneous Photocatalytic Degradation of Reactive Dyes in Aqueous TiO2 Suspensions: Decolorization Kinetics, Chem. Eng. J., 149: 215-220 (2009).
[47] Chen T.Y., Kao C.M., Hong A., Lin C.E., Liang S.H., Application of Ozone on the Decolorization of Reactive Dyes Orange, Desalination, 249: 1238-1242 (2009).
[49] Gupta V.K., Ali I., Saleh T.A., Nayak A., Agarwal S., Chemical Treatment Technologies for Waste-Water Recycling-an Overview, RSC Adv., 2: 6380-6388 (2012).
[50] Chatib B., Boussaoud A., Khayar V., Laftani Y., Elmakhfouk M., Hachkar M., Decolorization Kinetics of Ponceau S Dye by Chemical Chlorination: A Comparison with Sunlight/ Chlorine and UV/Chlorine Processes, Iran. J. Chem. Chem. Eng. (IJCCE), 40 (1) :111-121 (2021).
[51] Yenkie M., “Optimization of Dye Degradation Process By Oxidative Technology”, Proceeding: AIChE Annual Meeting (2018).
[52] Deshpande B.D., Agrawal P.S., Yenkie M.K.N., “AOP as a Degradative Tool for Oxidation of 4-Hydroxybenzoic Acid”, AIP Conference Proceedings 2104(1):020034; International Conference on ‘Multidimensional Role of Basic Science in Advanced Technology’ Icmbat (2018).
[53] Deshpandea B.D., Agrawal P.S., Yenkie M.K.N., “Advanced Oxidative Degradation Of Benzoic Acid and 4-Nitro Benzoic Acid-A Comparative Study”, AIP Conference Proceedings 2142:210003 (2019).
[54] Deshpande B.D., Agrawal P.S., Yenkie M.K.N., “Nanoparticles Aided AOP for Degradation of p-Nitro Benzoic Acid”, Materials Today: Proceedings, (2020).
[55] Mota A.L.N., Albuquerque L.F., Beltrame L.T.C., Chiavone-Filho O., Machulek A., Nascimento C.A.O., Advanced Oxidation Processes and Their Application in the Petroleum in the Petroleum Industry: A Review”, Braz. J. Petroleum. Gas, 2(3): 122-142 (2008).
[56] O’Shea K.E., Dionysiou D., Advanced Oxidation Processes for Water Treatment, J. Phys. Chem. Lett, 3: 2112-2113 (2012).
[57] De Souza S.M.G.U., Bonilla K.A.S., De Souza A.A.U., Removal of COD and Color from Hydrolyzed Textile Azo Dye by Combined Ozonation and Biological Treatment, J. Hazard. Mater, 179: 35-42 (2010).
[58] Liakou S., Cornaros M., Lyberatos G., Pretreatment of Azo Dyes Using Ozone, Water Sci. Technol, 36: 155-163 (1997).
[60] Hoigne J., Bader H., The Role of Hydroxyl Radical Reactions in Ozonation Processes in Aqueous Solutions, Water Res., 10: 377-386 (1976).
[61] Hoigne J., “The Chemistry of Ozone in Water. Process Technologies for Water Treatment”, Plenum Publishing Corporation, New York 121-141 (1998).
[62] Hoigne J., Chemistry of Aqueous Ozone and Transformation of Pollutants by Ozonation and Advanced Oxidation Processes, Quality and Treatment of Drinking Water II: 83-141 (1998).
[64] Kasprzyk-Hordern B., Ziołek MM., Nawrocki J., Catalytic Ozonation and Methods of Enhancing Molecular Ozone Reactions in Water Treatment, Appl. Catal. B: Environ., 46: 639-669 (2003).
[65] Wijannarong S., Aroonsrimorakot S., Thavipoke P., Kumsopa C., Sangjan S., Removal of Reactive Dyes from Textile Dyeing Industrial Effluent by Ozonation Process, APCBEE Procedia, 5: 279-282 (2013).
[68] Asgari G., Akbari S., Mohammadi A.S.M., Poormohammadi A., Ramavandi B., Preparation and Catalytic Activity of Bone-Char Ash Decorated with MgO-FeNO3 for Ozonation of Reactive Black 5 Dye from Aqueous Solution: Taguchi Optimization Data, Data in Brief, 13: 132-136 (2017).
[69] Orge C.A., Orfao M.J.J., Pereira M.F.R., De Farias A.M.D., Fraga M.A., Ceria and Cerium-Based Mixed Oxides as Ozonation Catalysts, Chem. Eng. J., 200-202: 499-505 (2012).
[70] Muthukumar M., Sargunamani D., Selvakumar N., Venkata Rao J., Optimisation of Ozone Treatment for Colour and COD Removal of Acid Dye Effluent Using Central Composite Design Experiment, Dyes Pigm, 63: 127-134 (2004).
[71] Liu X., Zhou Z., Jing G., Fang J., Catalytic Ozonation of Acid Red. B in Aqueous Solution over a Fe-Cu-O Catalyst, Sep. Purif. Technol., 115: 129-135 (2013).
[72] Kasiri M.B., Modirshahl M., Mansouri H., Decolorization of Organic Dye Solution by Ozonation; Optimization with Response Surface Methodology, Int. J. Ind. Chem., 4(3): 2-10 (2013).
[73] Tehrani-Bagha A.R., Mahmoodi N.M., Menger F.M., Degradation of a Persistent Organic Dye from Coloured Textile Wastewater by Ozonation, Desalination, 260(1-3): 34-38 (2010).
[74] Pachhade K., Sandhya S., Swaminathan K., Ozonation of Reactive Dye, Procion Red MX-5B Catalyzed by Metal Ions, J. Hazard. Mater, 167(1-3): 313-318 (2009).
[75] Faria P.C.C., Orfao J.J.M., Pereira M.F.R., Activated Carbon and Ceria Catalysts Applied to the Catalytic Ozonation of Dyes and Textile Effluents, Appl. Catal. B, 88(3-4): 341-350 (2009).
[77] Fanchiang J.M., Tseng D.H., Degradation of Anthraquinone dye C.I. Reactive Blue 19 in Aqueous Solution by Ozonation, Chemosphere, 77: 214-221 (2009).
[78] Oguz E., Keskinler B., Celik Z., Ozonation of Aqueous Bomaplex Red CR-L Dye in a Semi-Batch Reactor, Dyes Pigm., 64(2): 101-108 (2005).
[79] Gokcen F., Ozbelge T.A., Pre-ozonation of Aqueous Azo Dye (Acid Red-151) Followed by Activated Sludge Process, Chem. Eng. J., 123(3): 109-115 (2005).
[80] Zhao W.R., Shi H.X., Wang D.H., Ozonation of Cationic Red X-GRL in Aqueous Solution: Degradation and Mechanism, Chemosphere, 57(9): 1189-1199 (2004).
[81] Wang C., Yediler A., Lienert D., Wang Z., “Ozonation of an azo dye C.I. Remazol Black 5 and toxicological Assessment of Its Oxidation Products, Chemosphere, 52 (7): 1225-1232 (2003).
[82] Ruan X.C., Liu M.Y., Zeng Q.F., Ding Y.H., Degradation and Decolorization of Reactive Red X-3B Aqueous Solution by Ozone Integrated with Internal Micro-Electrolysis, Sep. Purif. Technol, 74: 195-201 (2010).
[83] Hassaan M.A., Nemr M.E., Madkour F.F., Testing the Advanced Oxidation Processes on the Degradation of Direct Blue 86 Dye in Wastewater, Egypt J. Aquat. Res, 43: 11-19 (2017).
[84] Kuo W.G., Decolorizing dye Wastewater with Fenton's Reagent, Water Res, 26(7): 881-886 (1992).
[85] Walling C., Intermediates in the Reactions of Fenton Type Reagents, Acc. Chem. Res, 31(4): 155-157 (1998).
[86] Jiang D.B., Liu X., Xu X., Zhang Y.X., Double-shell Fe2O3 Hollow Box-Like Structure for Enhanced Photo-Fenton Degradation of Malachite Green Dye, J. Phys. Chem. Solids, 112: 209-215 (2018).
[87] Arnold S.M., Hickey W.J., Harris R.F., Degradation of Atrazine by Fenton's Reagent: Condition Optimization and Product Quantification, Environ. Sci. Technol, 29: 2083-2089 (1995).
[88] Ersoz G., Fenton-Like Oxidation of Reactive Black 5 Using Rice Husk Ash-Based Catalyst, Appl. Catal. B: Environ, 147(5): 353-358 (2014).
[89] Bicaksiz Z., Aytimur G., Atalay S., Low-Pressure Catalytic Wet-Air Oxidation of a High-Strength Industrial Wastewater Using Fenton’s Reagent, Water Environ. Res, 80(6): 540-546 (2008).
[90] Hassan H., Hameed B.H., Fenton-Like Oxidation of Acid Red 1 Solutions Using Heterogeneous Catalyst Based on Ball Clay, Int. J. Environ. Sci. Dev, 2: 218-222 (2011).
[91] Taghavi K., Purkareim S., Pendashteh A., Chaibakhsh N., Optimized Removal of Sodium Dodecylbenzenesulfonate by Fenton-Like Oxidation Using Response Surface Methodology”, Iran. J. Chem. Chem. Eng (IJCCE), 35(4): 113-124 (2016).
[92] Taghavi K., Pendashteh A., Purkareim S., Combined Fenton-Like Oxidation and Aerobic MBBR Biological Processes for Treatment of the Wastewater of Detergent Industries, Desalin. Water Treat, 77: 206-214 (2017).
[93] Kanaani, F., Tavakoli, B., Pendashteh, A.R., Chaibakhsh, N., Ostovar, F., Coagulation/Fenton Oxidation Combined Treatment of Compost Leachate Using Quince Seed Mucilage as an Effective Biocoagulant, Environ. Technol. 1-26 (2019).
[94] Abedinzadeh, N., Monavari, M., Shariat, M., Pendashteh, A.R., Optimization Pulp and Paper Wastewater Treatment by Using Advanced Chemical Oxidation Fenton Method, J. Environ. Studies., 43(3): 365-377 (2017).
[96] Nichela D.A., Berkovic A.M., Costante M.R., Juliarena M.P., Garcıa Einschla F.S., Nitrobenzene Degradation In Fenton-Like Systems Using Cu(II) as Catalyst. Comparison between Cu(II)- and Fe(III)-Based Systems, Chem. Eng. J., 228: 1148-1157 (2013).
[98] Ertugay N., Nuran Acar F., Removal of COD and Color from Direct Blue 71 Azo Dye Wastewater by Fenton’s Oxidation: Kinetic Study, Arabian J. Chem, 10: S1158-S1163 (2017).
[99] Sohrabi M.R., Khavaran A., Shariati S., Shariati S., Removal of Carmoisine Edible Dye by Fenton and Photo Fenton Processes Using Taguchi Orthogonal Array Design, Arabian J. Chem, 10: S3523-S3531 (2017).
[100] Carvalho S.S.F., Carvalho N.M.F., Dye Degradation by Green Heterogeneous Fenton Catalysts Prepared in Presence of Camellia Sinensis, J. Environ. Manage, 187: 82-88 (2017).
[101] Idel-Aouad R., Valiente M., Yaacoubi A., Tanouti B., Lopez-Mesas M., Rapid Decolourization and Mineralization of the Azo Dye C.I. Acid Red 14 by Heterogeneous Fenton Reaction, J. Hazard. Mater., 186(1): 745-750 (2011).
[102] Daud N.K., Hameed B.H., Fenton-Like Oxidation of Reactive Black 5 Solution Using Iron-Montmorillonite K10 Catalyst, J. Hazard. Mater., 176(1-3): 1118-1121 (2011).
[103] Lahkimi A., Oturan M.A., Oturan N., Chaouch M., Removal of Textile Dyes from Water by the Electro-Fenton Process, Environ. Chem. Lett., 5: 35-39 (2007).
[104] Meric S., Kaptan D., Tunay O., Removal of Color and COD from A Mixture of Four Reactive Azo Dyes Using Fenton Oxidation Process, J. Environ. Sci. Health., 38(10): 2241-2250 (2003).
[105] Rosales E., Pazos M., Longo M.A., Sanroman M.A., Electro-Fenton Decoloration of Dyes in a Continuous Reactor: A Promising Technology in Colored Wastewater Treatment, Chem. Eng. J., 155: 62-67 (2009).
[106] Guimaraes J.R., Maniero M.G., De Araujo R.N., A Comparative Study on the Degradation of RB-19 Dye in an Aqueous Medium by Advanced Oxidation Processes, J. Environ. Manage., 110: 33-39 (2012).
[107] Daud N.K., Hameed B.H., Decolorization of Acid Red 1 by Fenton-Like Process Using Rice Husk Ash-Based Catalyst, J. Hazard. Mater., 176: 938-944 (2010).
[108] Sun J.H., Shi S.H., Lee Y.F., Sun S.P., Fenton Oxidative Decolorization of the Azo Dye Direct Blue 15 in Aqueous Solution, Chem. Eng. J., 155(3):680-683 (2009).
[109] Meric S., Selcuk H., Gallo M., Belgiorno V., Decolourisation and Detoxifying of Remazol Red Dye and Its Mixture Using Fenton's Reagent, Desalination, 173: 239-248 (2005).
[110] Dehghani M., Ghadami M., Gholami T., Ansari Shiri M., Elhameyan E., Javaheri M.R., Shamsedini N., Shahsavani S., Optimization of the Parameters Affecting the Fenton Process for Decolorization of Reactive Red 198 (RR-198) from the Aqueous Phase, J. Health. Sci. Surveillance Sys., 3: 139-145 (2015).
[111] Sharma S., Kapoor S., Christian R.A., Effect of Fenton Process on Treatment of Simulated Textile Wastewater: Optimization Using Response Surface Methodology, Int. J. Environ. Sci. Technol., 14(8): 1665-1678 (2017).
[115] Zhang Y., Li D.L., Chen Y., Wang X.H., Wang S.T., Catalytic Wet Air Oxidation of Dye Pollutants by Polyoxomolybdate Nanotubes under Room Condition, Appl. Catal. B, 86: 182-193 (2009).
[116] Kumar Kondru A., Kumar P., Chand S., Catalytic Wet Peroxide Oxidation of Azo Dye (Congo Red) Using Modified Y Zeolite as Catalyst, J. Hazard. Mater., 166: 342-347 (2009).
[117] Ovejero G., Rodriguez A., Vallet A., Garcia J., Ni Supported on Mg-Al Oxides for Continuous Catalytic Wet Air Oxidation of Crystal Violet, J. Appl. Catal. B, 125: 166-171 (2012).
[119] Levec J., Pintar A., Catalytic Wet-Air Oxidation Processes: A Review, Catal. Today., 124: 172-184 (2007).
[120] Arslan-Alaton I., Ferry J.L., Application of Polyoxotungstates as Environmental Catalysts: Wet Air Oxidation of Acid Dye Orange II, Dyes Pigm., 54: 25-36 (2002).
[121] Acharya N., Gupta V., Pawar N., Kumar Chaudhari P., Catalytic Treatment of Dye Bearing Wastewater, Chem. Mater. Res., 7(12): 25-34 (2015).
[122] Huang J., Wang X., Li S., Wang Y., ZnO/MoO3 Mixed Oxide Nanotube: A Highly Efficient and Stable Catalyst for Degradation of Dye by Air Under Room Conditions, Appl. Surf. Sci., 257: 116-121 (2010).
[123] Ersoz G., Napoleoni A., Atalay S., Comparative Study Using Chemical Wet Oxidation for Removal of Reactive Black 5 in the Presence of Activated Carbon, J. Environ. Eng., 139: 1462-1469 (2013).
[124] Ribeiro R.S., Fathy N.A., Attia A.A., Silva A.M.T., Faria J.L., Gomes H.T., Activated Carbon Xerogels for the Removal of the Anionic Azo Dyes Orange II and Chromotrope 2R by Adsorption and Catalytic Wet Peroxide Oxidation, Chem. Eng. J., 195-196: 112-121 (2012).
[125] Chang D.J., Chen I.P., Chen M.T., Lina S.S., Wet Air Oxidation of A Reactive Dye Solution Using CoAlPO4-5 and CeO2 Catalysts, Chemosphere, 52(6): 943-949 (2003).
[126] Vallet A., Ovejero G., Rodriguez A., Peres J.A., Garcia J., Ni/MgAlO Regeneration for Catalytic Wet Air Oxidation of an Azo-Dye in Trickle-Bed Reaction, J. Hazard. Mater., 244-245: 46-53 (2013).
[127] Xu Y., Li X., Cheng X., Sun D., Wang X., Degradation of Cationic Red GTL by Catalytic Wet Air Oxidation over Mo-Zn-Al-O Catalyst under Room Temperature and Atmospheric Pressure, Environ. Sci. Technol., 46: 2856-2863 (2012).
[128] Gutierrez M.C., Crespi M., A Review of Electrochemical Treatments for Color Elimination, J. Soc. Dyers Colour., 115: 342-345 (1999).
[129] Morsi M.S., Al-Sarawy A.A., Shehab El-Dein W.A., Electrochemical Degradation of Some Organic Dyes by Electrochemical Oxidation on a Pb/PbO2 Electrode, Desalin. Water Treat., 26: 301-308 (2011).
[130] Elahmadi M.F., Bensalah N., Gadri A., Treatment of Aqueous Wastes Contaminated with Congo Red Dye by Electrochemical Oxidation and Ozonation Processes, J. Hazard. Mater., 168(2-3): 1163-1169 (2009).
[132] Jovic M., Stankovic D., Manojlovic D., Andelkovic I., Milic A., Dojcinovic B., Roglic G., Study of the Electrochemical Oxidation of Reactive Textile Dyes Using Platinum Electrode, Int. J. Electrochem. Sci., 8: 168-183 (2013).
[133] Najafpoor A.A., Davoudi M., Rahmanpour Salmani E., Decolorization of Synthetic Textile Wastewater Using Electrochemical Cell Divided by Cellulosic Separator, J. Environ. Health. Sci. Eng., 15: 1-11(2017).
[134] Raghu S., Lee C.W., Chellammal S., Palanichamy S., Ahmed Basha C., Evaluation of Electrochemical Oxidation Techniques for Degradation of Dye. Effluents-A Comparative Approach, J. Hazard. Mater., 171: 748-754 (2009).
[135] Indu M.S., Gupta A.K., Sahoo C., Electrochemical Oxidation of Methylene Blue Using Lead Acid Battery Anode, APCBEE Procedia., 9: 70-74 (2014).
[136] Araujo C.K.C., Oliveira G.R., Fernandes N.S., Zanta C.L.P.S., Castro S.S.L., Da Silva D.R., Martinez-Huitle C.A., Electrochemical Removal of Synthetic Textile Dyes from Aqueous Solutions Using Ti/Pt Anode: Role of Dye Structure, Environ. Sci. Pollut. Res., 21(16): 9777-9784 (2014).
[137] Chatzisymeon E., Xekoukoulotakis N.P., Coz A., Kalogerakis N., Mantzavinos D., Electrochemical Treatment of Textile Dyes and Dyehouse Effluents, J. Hazard. Mater, B137: 998-1007 (2006).
[138] Anthuvan Babu S., Raja S., Sibi S., Neera ja P., Electrochemical Oxidation of Textile Polluted Water and its Reuse, J. Ind. Pollut. Control., 28(1): 73-82 (2012).
[139] Ramesh Babu B., Kuber Parande A., Arun Kumar S., Udya Bhanu S., Treatment of Dye Effluent by Electrochemical and Biological Processes, Open J. Saf. Sci. Techno.l, 1: 12-18 (2011).
[140] Tahir H., Rauf Shah A., Iqbal S., Kifayatullah H.M., The Statistical Optimization of Indirect Electrochemical Oxidation Process for the Treatment of Dye from Simulated Textile Discharge, Int. J. Environ. Sci. Nat. Res., 2(2): 555-583 (2017).
[141] Nidheesh P.V., Zhou M., Oturan M.A., An Overview On The Removal Of Synthetic Dyes From Water by Electrochemical Advanced Oxidation Processes, Chemosphere, 197: 210-227 (2018).
[142] Jager D., Kupka D., Vaclavikova M., Ivanicova L., Gallios G., Degradation of Reactive Black 5 by Electrochemical Oxidation, Chemosphere, 190: 405-416 (2018).
[143] Litter M.I., Introduction to Photochemical Advanced Oxidation Processes for Water Treatment, Environ. Photochem. Part II, 325-366 (2005).
[144] Mahadwad O.K., Parikh P.A., Jasra R.V., Patil C., Photocatalytic Degradation of Reactive Black-5 Dye Using TiO2-Impregnated Activated Carbon, Environ. Technol., 33(3): 307-312 (2012).
[145] Yoon J., Baek M., Hong J., Lee C., Suh J., Korean, Photocatalytic Degradation of Azo Dye Using TiO2 Supported on Spherical Activated Carbon, J. Chem. Eng, 29(12): 1722-1729 (2012).
[146] Li H., Zhu L., Ma C., Zhang H., TiO2 Hollow Microspheres: Synthesis, Photocatalytic Activity, and Selectivity for a Mixture of Organic Dyes, Monatsh Chem, 145(1): 29-37 (2013).
[147] Nezamzadeh-Ejhieh A., Karimi-Shamsabad M., Decolorization of a Binary Azo Dyes Mixture Using CuO Incorporated Nanozeolite-X as a Heterogeneous Catalyst and Solar Irradiation, Chem. Eng. J., 228: 631-641 (2013).
[149] Nezamzadeh-Ejhieh A., Zabihi-Mobarakeh H., Heterogeneous Photodecolorization of Mixture of Methylene Blue and 3-Bromophenol Blue Using CuO-Nano-Clinoptilolite, J. Ind. Eng. Chem, 20(4): 1421-1431 (2014).
[151] Alvia M.A., Al-Ghamdia A.A., ShaheerAkhtar M., Synthesis of ZnO Nanostructures via Low Temperature Solution Process for Photocatalytic Degradation of Rhodamine B Dye, Mater. Lett., 204: 12-15 (2017).
[152] Stanthi M., Kuzhalosai V., Photocatalytic Degradation of an Azo Dye, Acid Red 27, in Aqueous Solution Using Nano ZnO, Indian J. Chem., 51A: 428-434 (2012).
[153] Ashraful Islam Molla M., Furukawa M., Tateishi I., Katsumata H., Suzuki T., Kaneco S., Photocatalytic Decolorization of Dye with Self-Dye-Sensitization under Fluorescent Light Irradiation, Chem. Eng., 1(8): 1-10 (2017).
[156] Rajendiran S., Shriram B., Kanmani S., Photocatalytic-Ozonation of Textile Dyeing Waste Water Using Fixed Catalyst System, Int. Adv. Res. J. Sci. Eng. Technol., 3(3): 107-112 (2016).
[158] Mahmoodi N.M., Bashiri M., Jebeli Moeen S., Synthesis of Nickel-Zinc Ferrite Magnetic Nanoparticle and Dye Degradation Using Photocatalytic Ozonation, Mater. Res. Bull., 47: 4403-4408 (2012).
[159] Mahmoodi N.M., Photocatalytic Ozonation of Dyes Using Multiwalled Carbon Nanotube, J. Mol. Catal. A., Chem., 366: 254-260 (2013).
[160] Orge C.A., Faria J.L., Pereira M.F.R., Photocatalytic Ozonation of Aniline with TiO2-Carbon Composite Materials, J. Environ Manage, 195: 208-215 (2017).
[161] Anandan S., Lee GJ., Chen P.K., Fan C., Wu J.J., Removal of Orange II Dye in Water by Visible Light Assisted Photocatalytic Ozonation Using Bi2O3 and Au/Bi2O3 Nanorods, Ind. Eng. Chem. Res., 49: 9729-9737 (2010).
[163] Neamtu M., Yediler A., Siminiceanu I., Macoveanu M., Kettrup A., Decolorization of Disperse Red 354 Azo Dye in Water by Several Oxidation Processes -A Comparative Study, Dyes Pigm., 60: 61-68 (2004).
[164] Pignatello J., Oliveros E., MacKay A., Advanced Oxidation Processes for Organic Contaminant Destruction Based on the Fenton Reaction and Related Chemistry, Crit. Rev. Environ. Sci. Technol., 36: 1-84 (2006).
[165] El-Desoky H.S., Ghoneim M.M., Zidan N.M., Decolorization and Degradation of Ponceau S Azo-Dye in Aqueous Solutions by the Electrochemical Advanced Fenton Oxidation, Desalination, 264: 143-150 (2010).
[166] Laftani Y, Chatib B., Boussaoud A., El Makhfouk M., Hachkar M., Khayar M., Optimization of Diazo Dye Disappearance by UV/H2O2 Process Using the Box-Behnken Design, Water Sci. Technol., 80(9): 1731-1739 (2019).
[167] laftani Y., Boussaoud A., Chatib B., Hachkar M., El Makhfouk M., Hachkar M., Khayar M., Comparison of Advanced Oxidation Processes for Degrading Ponceau S Dye: Application of the Photo-Fenton Process, Maced. J. Chem. Chem. Eng., 38: 197-205 (2019).
[168] Shaban M., Abukhadra M.R., Ibrahim S.S.,  Shahien M.G., Photocatalytic Degradation and Photo-Fenton Oxidation of Congo Red Dye Pollutants in Water Using Natural Chromite-Response Surface Optimization, Appl. Water Sci., 7: 4743-4756 (2017).
[169] Barbosa I.A., Zanatta L.D., Espimpolo D.M., De Silva D.L., Nascimento L.F., Zanardi F.B., De Sousa Filho P.C., Serra O.A., Iamamoto Y., Magnetic Diatomite(Kieselguhr)/Fe2O3/TiO2 Composite as an Efficient Photo-Fenton System for Dye Degradation, Solid State Sci., 72: 14-20 (2017).
[170] Rashad M.M., Ibrahim A.A., Rayan D.A., Sanad M.M.S., Helmy I.M., Photo-Fenton-Like Degradation of Rhodamine B Dye from Waste Water Using Iron Molybdate Catalyst under Visible Light Irradiation, Environ. Nanotechnol. Monit. Manage., 8: 175-186 (2017).
[171] Jiang D.B., Liu X., Xu X., Zhang Y.X., Double-shell Fe2O3 hollow Box-Like Structure for Enhanced Photo-Fenton Degradation of Malachite Green Dye, J. Phys. Chem. Solids, 112: 209-215 (2018).
[172] Dias F.F., Oliveira A.A.S., Arcanjo A.P., Moura F.C.C., Pacheco J.G.A., Residue-Based Iron Catalyst for the Degradation of Textile Dye via Heterogeneous Photo-Fenton, Appl. Phys. B: Environ., 186(5): 136-142 (2016).
[174] Zhao X., Zhu L., Zhang Y., Yan J., Lu X., Huang Y., Tang H., Removing Organic Contaminants with Bifunctional Iron Modified Rectorite as Efficient Adsorbent and Visible Light Photo-Fenton Catalyst, J. Hazard. Mater., 215-216: 57-64 (2012).
[175] Arslan-Alaton I., Tureli G., Olmez-Hanci T., Optimization of the Photo-Fenton-Like Process for real And Synthetic Azo Dye Production Wastewater Treatment Using Response Surface Methodology, Photochem. Photobiol. Sci., 8: 628-638 (2009).
[176] Jin J., lEl-Din G.M., Bolton J.R., Assessment of the UV/Chlorine Process as an Advanced Oxidation Process”, Water Res., 45(4): 1890-1896 (2011).
[177] Habeeb H.A., Khayoon H.A., COD and Color Mineralization of Azure C Dye Using UV/ClO2 Technique, J. College Educ. Pure Sci., 5(2): 46-67 (2015).
[178] Wu Q., Li Y., Wang W., Wang T., Hu H., Removal of C.I. Reactive Red 2 by Low Pressure UV/Chlorine Advanced Oxidation, J. Environ. Sci., 41: 227-234 (2016).
[179] Benvenuti T., Preis Gabrie A., Heberle N.A.A., Lucena M.P.P., Melo Halmenschlager Petter P., Meneguzzi A., Moura Bernardes A., Evaluation of Direct Photolysis, Electrooxidation and Photoelectrooxidation for Rhodamine-B Degradation, Braz. J. Chem. Eng., 35(3): 957-968 (2018).