Equilibrium, Mechanism, and Mass Transfer Studies of Nickel(II) Adsorption by Sewage Sludge-Derived Activated Carbon

Document Type : Research Article

Authors

1 Laboratoire d’Analyses Industrielles et Génie des Matériaux, Département de Génie des Procédés, Faculté des Sciences et de la Technologie, Université 8 Mai 1945 Guelma, ALGERIA

2 Département des Hydrocarbures et Energies Renouvelables, Faculté des Sciences et de la Technologie, Université Ahmed Draia Adrar, ALGERIA

3 Département des Sciences de la Matière, Faculté des Sciences et de la Technologie, Université Ahmed Draia Adrar, ALGERIA

4 Laboratoire Energie, Environnement et Systèmes d’Information (LEESI), Faculté des Sciences et de la Technologie, Université Ahmed Draia Adrar, ALGERIA

5 Laboratoire d’Etudes Physico-Chimiques des Matériaux et Application à l’Environnement (LEPCMAE), USTHB, Algiers, ALGERIA

Abstract

The present study was undertaken to evaluate the equilibrium, mechanism, and mass transfer of nickel(II) ions adsorption on activated carbon derived from sewage sludge. Batch adsorption experiments were performed as a function of initial Ni(II) ions concentration (10-50 mg/L) and contact time (10-120 min). The experimental data were analyzed by different models and Freundlich model showed a better representation of equilibrium data (R2>0.99) and the mean adsorption energy was found to be E= 3.98 kJ/mol. Mechanism study indicates that both external mass transfer (D2) and mass transfer diffusion coefficient (kL) are important in determining the adsorption rates (5.50 × 10-5 cm/s and 7.30 × 10-7 cm/s). We also found that nickel(II) adsorption onto activated carbon would be attributed to a Physico-chemical adsorption process. The results suggest that sewage sludge-derived activated carbon could be used beneficially as an effective and alternative adsorbent for the removal of nickel(II) ions from aqueous solutions.

Keywords

Main Subjects


[1] Kononova O.N., Karplyakova N.S., Duba E.V., Sorption Recovery of Platinum (II, IV) in Presence of Copper (II) and Zinc (II) from Chloride Solutions, J. Serb. Chem. Soc., 80: 1101-1111(2015).
[3] Southichak B., Nakano K., Nomura M., Chiba N., Nishimura O., Phragmitesaustralis: A Novel Biosorbent for the Removal of Heavy Metals from Aqueous Solution, Water Res., 40: 2295-2302 (2006).
[4] Ahmad P.H, Samadi Z.M., Tavangari S., Nickel Adsorption from Environmental Samples by Ion Imprinted Aniline-Formaldehyde Polymer, Iran. J. Chem. Chem. Eng.(IJCCE), 31(3): 35-44 (2012).
[6] Zaigham H., Zubair A., Khattak K.U., Mazhar I., Khan R.U., Khattak J.Z.K., Civic Pollution and Its Effect on Water Quality of River Toi at District Kohat, NWFP, Res. J. Environ. Earth Sci., 4: 5 (2012).
[7] Khelifi O., Etude De L’adsorption Du Nickel et du Cuivre Sur un Charbon Actif Préparé a Partir Des Boues De Station D’épuration , Thèse de Doctorat, Université 8 Mai 1945 Guelma, Algeria (2018).
[8] Khelifi O., Nacef M., Affoune A.M., Nickel (II) Adsorption from Aqueous Solutions by Physico-Chemically Modified Sewage Sludge, Iran. J. Chem. Chem. Eng.(IJCCE), 37: 73-87 (2018).
[9] Gupta V.K., Suhas, Nayak A., Agarwal S., Chaudhary M., Tyagi I., Removal of Ni (II) Ions from Water Using Scrap Tire, J. Mol. Liq., 190: 215-222 (2014).
[10] Yousefi M., Arami S.M., Takallo H., Hosseini M., Radfard M., Soleimani H., Mohammadi A.A., Modification of Pumice with HCl and NaOH Enhancing its Fluoride Adsorption Capacity: Kinetic and Isotherm Studies, Hum. Ecol. Risk. Assess. Int. J., 25: 1508-1520 (2018).
[11] Mohammadi A.A., Zarei A., Alidadi H., Afsharnia M., Shams M., Two-Dimensional Zeoliticimidazolate Framework-8 for Efficient Removal of Phosphate from Water, Process Modeling, Optimization, Kinetic, and Isotherm Studies, Desalin. Water. Treat., 128: 244-254 (2018).
[13] Khelifi O., Nacef M., Affoune A. M., Biosorption of Nickel(II) Ions from Aqueous Solutions by Using Chicken Eggshells as Low-Cost Biosorbent, Algerian Journal of Environmental Science and Technology, 2: 12-16 (2016).
[14] Abbas M., Zaini A., Amano Y., Machida M., Adsorption of Heavy Metals Ontoactivated Carbons Derived from Polyacrylonitrile Fiber, J. Hazard. Mater., 180: 552-560 (2010).
[15] Elouear Z., Bouzid J., Boujelben N., Removal of Nickel and Cadmium from Aqueous Solutions by Sewage Sludge Ash: Study in Single and Binary Systems, Environ. Technol., 30: 561-570 (2009).
[16] Kadirvelu K., Thamaraiselvi K., Namasivayam C., Adsorption of Nickel(II) from Aqueous Solution onto Activated Carbon Prepared from Coirpith, Sep. Purif. Technol., 24: 497-505 (2001).
[17] Kumar P.S., Ramalingam S., Kirupha S.D., Murugesan A., Vidhyadevi T., Sivanesan S., Adsorption Behavior of Nickel(II) onto Cashew Nut Shell: Equilibrium, Thermodynamics, Kinetics, Mechanism and Process Design, Chem. Eng. J., 167: 122-131 (2011).
[18] Laksaci H., Khelifi A., Trari M., Adoun A., Synthesis and Characterization of Microporous Activated Carbon from Coffee Grounds Using Potassium Hydroxides, J. Clean. Prod., 147: 254-262 (2017).
[20] Kobya M., Demirbas E., Senturk E., Ince M., Adsorption of Heavy Metal Ions from Aqueous Solutions by Activated Carbon Prepared from Apricot Stone, Bioresour. Technol., 96: 1518-1521 (2005).
[21] Yanagisawa H., Matsumoto Y., Machida M., Adsorption of Zn(II) and Cd(II) Ions onto Magnesium and Activated Carbon Composite in Aqueous Solution, Appl. Surf. Sci., 256: 1619-1623 (2010).
[22] Faraji H., Mohamadi A.A., Soheil Arezomand H.R., Mahvi A.H., Kinetics and Equilibrium Studies of
the Removal of Blue Basic 41 and Methylene Blue from Aqueous Solution Using Rice Stems
, Iran. J. Chem. Chem. Eng.(IJCCE), 34(3): 33-42 (2015).
[23] Hadi P., Xu M., Ning C., Sze Ki Lin C., Mckay G., A Critical Review on Preparation, Characterization and Utilization of Sludge-Derived Activated Carbons for Wastewater Treatment, Chem. Eng. J., 260: 895-906 (2015).
[24] Victor M.M., Angel F.M., Juan J.R., Activated Carbons from Sewage Sludge Application to Aqueous-Phase Adsorption of 4-Chlorophenol, Desalination, 277: 377-382 (2011).
[25] Pilli S., Bhunia P., Yan S., LeBlanc R.J., Tyagi R.D., Surampalli R.Y., Ultrasonic Pretreatment of Sludge: A Review, Ultrason. Sonochem., 18:1-18 (2011).
[26] Wang X., Liang X., Wang Y., Wang X., Liu M., Yin D., Xia S., Zhao J., Zhang Y., Adsorption of Copper (II) onto Activated Carbons from Sewage Sludge by Microwave-Induced Phosphoric Acid and Zinc Chloride Activation, Desalination, 278: 231-237 (2011).
[27] Ayub S., Mohammadi A.A., Yousefi M., Changani F., Performance Evaluation of Agro-Based Adsorbents for the Removal of Cadmium from Wastewater, Desalin. Water. Treat., 142: 293-299 (2019).
[28] Yousefi M., Nabizadeh R., Alimohammadi M., Mohammadi A.A., Mahvi A.H., Removal of Phosphate from Aqueous Solutions Using Granular Ferric Hydroxide Process Optimization by Response Surface Methodology, Desalin. Water. Treat., 158: 290-300 (2019).
[29] Dubinin M.M., Radushkevich L.V., The Equation of the Characteristic Curve of Activated Charcoal. Proc. Acad. Sci. Phys. Chem. Sect. USSR, 55: 331 (1947).
[30] Redlich O., Peterson D. L., A Useful Adsorption Isotherm, J. Phys. Chem., 63: 1024-1024 (1959).
[31] Özer A., Gürbüz G., Çalimli A., Körbahti B.K., Biosorption of Copper(II) Ions on Enteromorphaprolifera: Application of Response Surface Methodology (RSM), Chem. Eng. J., 146: 377-387 (2009).
[32] Sarkar M., Acharya P.K., Bhattacharya B., Modeling the Adsorption Kinetics of Some Priority Organic Pollutants in Water from Diffusion and Activation Energy Parameters, J. Colloid Interface Sci., 266: 28-32 (2003).
[33] Weber W.J., Morris J.C., Advances in Water Pollution Research: Removal of Biologically-Resistant Pollutants from Waste Water by Adsorption, “Proc. Int. Conf. on Water Pollution Symp.”, Vol. 2, Pergamon Press, Oxford, 231-266 (1962).
[34] Crank J., “The Mathematics of Diffusion”, Clarendon Press, Oxford (1975).
[35] Vadivelan V., KumarK.V., Equilibrium, Kinetics, Mechanism, and Process Design for the Sorption of Methylene Blue onto Rice Husk, J. Colloid Interf. Sci., 286: 90-100 (2005).
[36] Sarıcı-Özdemir Ç., Önal Y., Study to Investigate the Importance of Mass Transfer of Naproxen Sodium onto Activated Carbon, Chem. Eng. Process., 49: 1058-1065 (2010).
[37] Poling B.E., Prausnitz M., Connell J.P.O., “The Properties of Gases and Liquids”, 5th ed., McGraw-Hill, USA, (2006).
[38] Önal Y., Akmil-Bașar C., Investigation Kinetics Mechanisms of Malachite Green onto Activated Carbon, J. Hazard. Mater., 146:194-203 (2007).
[39] Sarıcı-Özdemir Ç., Önal Y., Study to Investigate the Importance of Mass Transfer of Naproxen Sodium onto Activated Carbon, Chemical Engineering and Processing, 49:1058–1065 (2010).