Adsorption of Indigo Carmine Dye onto Physicochemical-Activated Leaves of Agave Americana L

Document Type : Research Article


Electromechanical Systems Laboratory LASEM, National Engineering School of Sfax, University of Sfax, Soukra km 4, 3038 Sfax, TUNISIA


Dyes represent a serious threat to the environment when released in wastewaters. Hence, the main objective of this work was to design and fabricate an activated carbon from an invasive plant – Agave Americana L – capable of removing indigo carmine in aqueous solutions. The equilibrium adsorption of indigo carmine was assessed using the Freundlich, Langmuir,
and Dubinin-Radushkevich isotherm model. The zinc chloride was used to activate the powder of Agave at 600 °C and 900 °C. The results of this work showed that the elaborated activated carbon had maximum adsorption of 61.72 mg/g and a specific surface area of 38 m²/g determined using the BET method. The thermodynamic study showed that the adsorption of indigo carmine on the activated carbon was endothermic. Therefore, the activated carbon prepared from the Agave Americana L would be an efficient and cost-effective alternative adsorbent of indigo carmine and would have a positive effect on the environment.


Main Subjects

[1] Sahraei R., Cheraghi J., Hushmandfar R., Abbasi S., Mortazavi S. S., Noorizadeh H., Farmany A., Catalytic Oxidation of Indigo Carmine in the Presence of Silver Nanoparticles: Application to Groundwater Analysis, J. Chinese Chem. Soc., 60: 195-198 (2013).
[3] Mittal A., Mittal J., Kurup L., Utilization of Hen Feathers for the Adsorption of Indigo Carmine from Simulated Effluents, JEPS, 1: 92-100(2007).
[4] Arenas C. N., Vasco A., Betancur M., Martinez J. D., Removal of Indigo Carmine (IC) from Aqueous Solution by Adsorption through Abrasive Spherical Materials Made of Rice Husk Ash (RHA), Proc. Saf. Env. Prot., 106: 224-238 (2017).
[5] Almoisheer N., Alseroury F. A., Kumar R., Aslam M., Barakat M. A., Adsorption and Anion Exchange Insight of Indigo Carmine onto CuAl-LDH/SWCNTs Nanocomposite: Kinetic, Thermodynamic and Isotherm Analysis, RSC Adv., 9: 560–568 (2019).
[6] Lakshmi U.R., Srivastava V.C., Mall I.D., Lataye D.H., Rice Husk Ash as an Effective Adsorbent: Evaluation of Adsorptive Characteristics for Indigo Carmine Dye, J. Env. Management., 90: 710-720 (2009).
[8] Ferhat D., Nibou D., Elhadj M., Amokrane S., Adsorption of Ni2+ Ions onto NaX and NaY zeolites: Equilibrium, Kinetics, Intra Crystalline Diffusion and Thermodynamic Studies, Iran. J. Chem. Chem. Eng. (IJCCE), 38(6): 63–81 (2019).
[9] Ba S., Ennaciri K., Yaacoubi A., Alagui A., Bacaoui A., Activated Carbon from Olive Wastes as an Adsorbent for Chromium Ions Removal, Iran. J. Chem. Chem. Eng. (IJCCE), 37(6): 107-123 (2018).
[10] Ben Nasr J., Hamdi N., Elhalouani F., Characterization of Activated Carbon Prepared from Sludge Paper for Methylene Blue Adsorption, J. Mater. Env. Sci., 8: 1960-1967 (2017).
[11] Bohli T., Ouederni A., Villaescusa I., Simultaneous Adsorption Behavior of Heavy Metals onto Microporous Olive Stones Activated Carbon : Analysis of Metal Interactions, Euro-Mediterranean J. Environ. Integr., 2(1): 1–15 (2017).
[12] Demirbas A., Heavy Metal Adsorption onto Agro-Based Waste Materials: A Review. J. Hazard. Mater., 157 (2–3): 220–229 (2008).
[13] Piai L., Blokland M., van der Wal A., Langenhoff A., Biodegradation And Adsorption of Micropollutants by Biological Activated Carbon from a Drinking Water Production Plant, J. Hazard. Mater., 388: (2020).
[14] Esmaeili A., Ghasemi S., Zamani F., Investigation of Cr(VI) Adsorption by Dried Brown Algae Sargassum sp. and Its Activated Carbon. Iran. J. Chem. Chem. Eng. (IJCCE), 31(4): 11–19 (2012).
[15] Crini G., Non-Conventional Low-Cost Adsorbents for Dye Removal: A Review, Bioresource Technology, 97: 1061–1085 (2006).
[16] Tsai W. T., Chang C. Y., Lin M. C., Chien S. F., Sun H. F., Hsieh M. F., Adsorption of Acid Dye onto Activated Carbon Prepared from Agricultural Waste Bagasse by ZnCl2 Activation, Chemosphere, 45: 51–58 (2001).
[17] Spessato L., Bedin K. C., Cazetta A. L., Souza I. P. A. F., Duarte V. A., Crespo L. H. S., Silva M. C., Pontes R. M., Almeida V., KOH-Super Activated Carbon from Biomass Waste: Insights into the Paracetamol Adsorption Mechanism and Thermal Regeneration Cycles, J. Hazard. Mater. , 371: 499–505 (2019).
[19] Mondal M. K., Garg R., A comprehensive Review on Removal of Arsenic Using Activated Carbon Prepared from Easily Available Waste Materials. Environ. Sci. Pollut. Res., 24(15): 13295–13306 (2017).
[20] Heidarinejad Z., Dehghani M. H., Heidari M., Javedan G., Ali I., Sillanpää M., Methods for Preparation and Activation of Activated Carbon: A Review, Environ. Chem. Lett., 18: 393–415 (2020).
[21] Mansouri A., Ben Nasr J., Ben Amar M., Elhalouani F., Characterization of Fiber Extracted from Agave americana after Burial in Soil. Fibers and Polymers, 21(4): 724-732 (2020).  
[22] Bezazi A., Belaadi A., Bourchak M., Scarpa F., Boba K., Novel Extraction Techniques, Chemical and Mechanical Characterisation of Agave Americana L. Natural Fibres, Composites Part B: Engineering, 66: 194–203 (2014).
[23] Maaloul N., Ben Arfi R., Rendueles M., Ghorbal A., Diaz M., Dialysis-Free Extraction and Characterization of Cellulose Crystals from Almond (Prunus Dulcis) Shells. J. Mater. Environ. Sci., 8(11): 4171-4181 (2017).
[24] Ben Arfi R., Karoui S., Mougin K., Ghorbal A., Adsorptive Removal of Cationic and Anionic Dyes from Aqueous Solution by Utilizing Almond Shell as Bioadsorbent, Euro-Mediterranean J. Environ. Integr., 2(1): 217-229 (2017).
[26] Maaloul N., Oulego P., Rendueles M., Ghorbal A., Díaz M., Synthesis and Characterization Of Eco-Friendly Cellulose Beads for Copper (II) Removal from Aqueous Solutions, Environ. Sci. Pollut. Res., 27: 23447–23463 (2020).
[27] Maaloul N., Oulego P., Rendueles M., Ghorbal A., Díaz M., Novel Biosorbents from Almond Shells: Characterization and Adsorption Properties Modeling for Cu(II) Ions from Aqueous Solutions. J. Environ. Chem. Eng., 5(3): 2944–2954 (2017).
[28] Lahouioui M., Ben Arfi R., Fois M., Ibos L., Ghorbal A., Investigation of Fiber Surface Treatment Effect on Thermal, Mechanical and Acoustical Properties of Date Palm Fiber-Reinforced Cementitious Composites. Waste and Biomass Valorization, 11: 4441–4455 (2020).
[30] Yagmur E., Gokce Y., Tekin S., Semerci N.I., Aktas Z., Characteristics and Comparison of Activated Carbons Prepared from Oleaster (Elaeagnus Angustifolia L.) Fruit Using KOH and ZnCl2. Fuel, 267: 117232 (2020).
[32] Pezoti Junior O., Cazetta A. L., Gomes R. C., Barizão É. O., Souza I.P.A.F., Martins AC., Asefa T., Almeida V.C., Synthesis of ZnCl2-Activated Carbon from Macadamia Nut Endocarp (Macadamia integrifolia) by Microwave-Assisted Pyrolysis: Optimization Tsing RSM and Methylene Blue Adsorption. J. Anal. Appl. Pyrolysis, 105: 166–176 (2014).
[34] Rejeb R., Antonissen G., De Boevre M., Detavernier C.C., Van de Velde M., De Saeger S., Ducatelle R. Hadj Ayed M., Ghorbal A., Calcination Enhances the Aflatoxin and Zearalenone Binding Efficiency  of a Tunisian Clay. Toxins (Basel). 11(10): 602 (2019).
[35] Repo E., Warchol J.K., Kurniawan T.A., Sillanp M.E.T., Adsorption of Co(II) and Ni(II) by EDTA- and/or DTPA-Modified Chitosan: Kinetic and Equilibrium Modeling. Chem. Eng. J., 161(1–2): 73–82 (2010).
[36] Repo E., Kurniawan T.A., Warchol J.K., Sillanp M. E.T., Removal of Co(II) and Ni(II) Ions from Contaminated Water using Silica Gel Functionalized with EDTA and/or DTPA as Chelating Agents. J. Hazard. Mater., 171(1–3): 1071–1080 (2009).
[39] Hobson J. P., Physical adsorption isotherms extending from ultrahigh vacuum to vapor pressure. J. Phys. Chem., 73(8): 2720–2727 (1969).
[40] Zhang Z., Moghaddam L., O’Hara I. M., Doherty W.O.S., Congo Red Adsorption by Ball-Milled Sugarcane Bagasse. Chem. Eng. J.,178: 122–128 (2011).
[41] Lin K., Pan J., Chen Y., Cheng R., Xu X., Study the Adsorption of Phenol from Aqueous Solution on Hydroxyapatite Nanopowders. J. Hazard. Mater., 161(1): 231–240 (2009).
[42] Prado, A.G.S., Torres, J.D., Faria, E.A., Dias, S.C.L., Comparative Adsorption Studies of Indigo Carmine Dye on Chitin and Chitosan, J. Coll. Interf. Sci., 277: 43–47 (2004).