Adsorption of Scandium and Yttrium from Aqueous Solutions by Purolite C100Na Resin: Equilibrium and Kinetic Modeling

Document Type : Research Article


1 Department of Metallurgy and Materials Science, Shahid Bahonar University of Kerman, I.R. IRAN

2 Mineral Processing Engineering, Zarand College, Shahid Bahonar University of Kerman, Zarand, I.R. IRAN


Adsorption of Sc from single and bi-component Sc-Y solutions by Purolite C100Na was studied experimentally and kinetic and thermodynamic characteristics are described. The extended Freundlich isotherm was found to be successful in validating the experimental results. Moreover, the curve fitting the time-dependent data into different kinetics mechanisms showed a satisfactory correlation with the pseudo-second-order model. Binary system results show a decrease in Sc adsorption capacity of the absorbent in presence of secondary ions due to competition for adsorption sites. Furthermore, thermodynamic parameters indicate similarity of reaction mechanisms for both single and binary systems, with Sc absorption adversely affected by temperature. Results from synthetic solutions with an actual Y/Sc ratio of 5 were used for extracting scandium from actual mining copper leach solution by circulating it through a resin column. The results demonstrate a satisfactory collection of Sc ions despite the fivefold concentration of Y over Sc. The elusion studies showed that the yttrium desorption peak occurs before that of Sc which corroborates the adsorption isotherm findings. This results in a 180 mg/L Sc rich solution or 60:1 concentration ratio over the original copper leach solution.


Main Subjects

[1] Krishnamurthy N., Gupta CK., "Extractive Metallurgy of Rare Earths", CRC Press (2015).
[2] Van Nguyen N., Iizuka A, Shibata E., Nakamura T., “Recovery of Scandium from Chloride Media Using the Novel Ion Exchange Resin”, Proceedings of the World Congress on Mechanical, Chemical, and Material Engineering. Barcelona, Spain ., 3381-3384 (2015).
[3] Zemlyanoy S., Gangrsky Y., Marinova K., Avgoulea M., Billowes J., Campbell P., Cheal B., Tordoff B., Fritzsche S., Loblonskyi D., Barbieri C., Simpson E.C., Sterenson P.D., Bissell M.L., Forest D.H., Gardner M.D., Tungate G., Huikari J., Nieminen A., Penttila H., “Nuclear Charge Radii and Electromagnetic Moments of Scandium Isotopes and Isomers”, Proceedings of the 8th Conference on Nuclear and Particle Physics, Hurghada, Egypt, 27-28 (2011).
[5] Badwal S., Ciacchi F., Milosevic D., Scandia–Zirconia Electrolytes for Intermediate Temperature Solid Oxide Fuel Cell Operation, Solid. State. Ion., 136: 91-9 (2000).
[6] Thapa R., Nissinen T., Turhanen P., Määttä J., Vepsäläinen J., Lehto V-P., Riikonen J., Bisphosphonate Modified Mesoporous Silicon for Scandium Adsorption, Microporous. Microporous. Mater., 296:109980 (2020).
[7] Altinsel Y., Topkaya Y., Kaya Ş., Şentürk B., "Extraction of Scandium from Lateritic Nickel-Cobalt ore Leach Solution by Ion Exchange: A Special Study and Literature Review on Previous Works," TMS Annual Meeting & Exhibition, Springer., 1545-1553 (2018).
[8] Zhang N., Li H-X., Liu X-M., Recovery of Scandium from Bauxite Residue—Red Mud: A Review, Rare. Metals., 5:887-900 (2016).
[9] Zhang Y., Zhao H., Sun M., Zhang Y., Meng X., Zhang L., Lv X., Davaasambuu S., Qiu G., Scandium Extraction from Silicates by Hydrometallurgical Process at Normal Pressure and Temperature, J. Mater. Res. Technol., 9: 709-17 (2020).
[10] Wang W., Cheng C.Y., Separation and Purification of Scandium by Solvent Extraction and Related Technologies: A Review, J. Chem. Technol. Biotechnol., 86:1237-46 (2011).
[11] Wang W., Pranolo Y., Cheng C.Y., Metallurgical Processes for Scandium Recovery from Various Resources: A Review, Hydrometallurgy., 108:100-108 (2011).
[12] Habashi F., "A textbook of hydrometallurgy", Métallurgie Extractive (1999).
[13] Ross J., Rosenbaum J., "Reconnaissance of Scandium Sources and Recovery of Scandium from Uranium Mill Solutions: US Dept of Interior", US Dept. of Interior, Bureau of Mines (1962).
[14] Nebeker N., Hiskey J.B., Recovery of Rhenium from Copper Leach Solution by Ion Exchange, Hydrometallurgy., 125: 64-68 (2012).
[15] Hiskey J.B., Copp R.G., Recovery of Yttrium and Neodymium from Copper Pregnant Leach Solutions by Solvent Extraction, Hydrometallurgy., 177: 21-26 (2018).
[16] Felipe E., Batista K., Ladeira A., Recovery of Rare Earth Elements from Acid Mine Drainage by Ion Exchange, Environ. Technol., 1-32 (2020).
[17] Burakova I., Burakov A., Tkachev A., Troshkina I., Veselova O., Babkin A.V., Moe Aung W., Ali I., Kinetics of the Adsorption of Scandium and Cerium Ions in Sulfuric Acid Solutions on a Nanomodified Activated Carbon, J. Mol. Liq., 253:277-283 (2018).
[18] Torab-Mostaedi M., Asadollahzadeh M., Hemmati A., Khosravi A., Biosorption of Lanthanum and Cerium From Aqueous Solutions by Grapefruit Peel: Equilibrium, Kinetic and Thermodynamic Studies, Res. Chem. Intermed., 41: 559-73 (2015).
[19] Varshini C., Nilanjana D.N., Screening of Biowaste Materials for the Sorption of Cerium (III) from Aqueous Environment, Res. J. Pharm., Biol. Chem. Sci., 5: 402-408 (2014).
[20] Yao T., Xiao Y., Wu X., Guo C., Zhao Y., Chen X., Adsorption of Eu (III) on Sulfonated Graphene Oxide: Combined Macroscopic and Modeling Techniques, J. Mol. Liq., 215:443-8 (2016).
[22] Butnariu M., Negrea P., Lupa L., Ciopec M., Negrea A., Pentea M., Sarac L., Samfira L., Remediation of Rare Earth Element Pollutants by Sorption Process Using Organic Natural Sorbents, Int. j. Environ. Res. Public Health., 12: 11278-11287 (2015).
[23] Dubey S.S., Grandhi S., Sorption Studies of Yttrium (III) Ions on Nano Maghemite, J. Environ. Chem. Eng.4: 4719-30 (2016).
[24] Ogata T., Narita H., Tanaka M., Adsorption Behavior of Rare Earth Elements on Silica Gel Modified with Diglycol Amic Acid, Hydrometallurgy., 152:178-182 (2015).
[25] Karamzadeh Z., Yaftian MR., Shiri Yekta Z., Nilchi A., Dolatyari L., Extraction-Separation of Eu (III)/Th (IV) Ions with a Phosphorylated Ligand in an Ionic Liquid, Iran. J.  Chem. Chem. Eng. (IJCCE), 35(2): 89-95 (2016).
[26] Ola P.D., Matsumoto M., "Metal Extraction with Ionic Liquids-Based Aqueous Two-Phase System",  Recent Advances in Ionic Liquids (2018).
[27] Han D., Row K.H., Recent Applications of Ionic Liquids in Separation Technology, Molecules., 15: 2405-2426 (2015).
[28] Kumar S., Jain S., History, introduction, and Kinetics of Ion Exchange Materials, J. Chem., 2013:1-13 (2013).
[29] Page M.J, Soldenhoff K, Ogden M.D., Comparative Study of the Application of Chelating Resins for Rare Earth Recovery, Hydrometallurgy., 169:275-281 (2017).
[30] Ochsenkühn-Petropoulou M.T., Hatzilyberis K.S., Mendrinos L.N., Salmas C.E., Pilot-Plant Investigation of the Leaching Process for the Recovery of Scandium from Red Mud, Ind. Eng. Chem. Res., 41:5794-801 (2002).
[33] Wang W., Pranolo Y., Cheng C.Y., Recovery of Scandium from Synthetic Red Mud Leach Solutions by Solvent Extraction with D2EHPA, Sep. Purif. Technol., 108:96-102 (2013).
[34] Rychkov V.N., Semenishchev V.S., Mashkovtsev M.A., Kirillov E.V., Kirillov S.V., Bunkov GM., Botalov M.S., Deactivation of the Scandium Concentrate Recovered from Uranium Leach Liquors, J. Radioanal. Nucl. Chem., 310:1247-53, (2016).
[36] Smirnov A.L., Titova S.M., Rychkov V.N., Bunkleov G.M., Semenishchev V.S, Kirillov E.V, Poponin N.B., Svirsky I.A.. Study of Scandium and Thorium Sorption from Uranium Leach Liquors, J. Radioanal. Nucl. Chem., 312:277-283 (2017).
[37] Broekaert J., Hörmann P., Separation of Yttrium and Rare Earth Elements from Geological Materials, Anal. Chim. Acta., 124:421-5 (1981).
[38] Koopman C, Witkamp G, Van Rosmalen G., Removal of Heavy Metals and Lanthanides from Industrial Phosphoric Acid Process Liquors, Sep. Sci. Technol., 34:2997-3008 (1999).
[39] Chour Z., Laubie B., Morel JL., Tang Y., Qiu R., Simonnot M-O., Muhr L., Recovery of Rare Earth Elements from Dicranopteris Dichotoma by an Enhanced Ion Exchange Leaching Process, Chem. Eng. Process., 130:208-213 (2018).
[40] Zinovyev V.G., Mitropolsky I.A., Shulyak G.I., Sushkov P.A., Tyukavina T.M., Sakharov S.L., Malyutenkov E.I., Tikhonova A.E., Okunev I.S., Study of the Gadolinium Sorption on the C100 Ion-Exchange Resin for the Development of the Antineutrino Detector Targets, J. Radioanal. Nucl. Chem., 315: 459-473 (2018).
[41] Abo-Farha S., Abdel-Aal A., Ashour I., Garamon S., Removal of Some Heavy Metal Cations by Synthetic Resin Purolite C100, J. Hazard. Mater., 169:190-4 (2009).
[43] Fathi M.B., Rezai B., Keshavarz Alamdari E., Alorro R.D., Equilibrium Modeling In Adsorption of Re and Mo Ions from Single and Binary Aqueous Solutions on Dowex 21K Resin, Geosyst. Eng., 21:73-80 (2018).
[44] Salarirad MM., Behnamfard A., “Modeling of Equilibrium Data for Free Cyanide Adsorption onto Activated Carbon by Linear and Non-Linear Regression Methods”, International Conference on Environment and Industrial Innovation, 79-84 (2011).
[45] Samadani Langeroodi N, Farhadravesh Z, Dehno Khalaji A., Optimization of Adsorption Parameters for Fe (III) Ions Removal from Aqueous Solutions by Transition Metal Oxide Nanocomposite, Green. Chem. Lett. Rev., 11:404-413 (2018).
[46] Safaei E., Langeroodi N.S., Baher E., Investigation of Removal of Cu (II) Ions by Commercial Activated Carbon: Equilibrium and Thermodynamic Studies, Pro. Met. Phys. Chem. Surf., 55:28-33 (2019).
[47] Tajari E., Langeroodi N.S., Khalafi M., Statistical Modeling, Optimization and Kinetics of Mn2+ Adsorption in Aqueous Solution Using a Biosorbent, Z. Phys. Chem., 233:1201-1214 (2019).
[48] Bao S., Hawker W., Vaughan J., Scandium Loading on Chelating and Solvent Impregnated Resin from Sulfate Solution, Solvent Extr. Ion  Exch., 36:100-113 (2018).
[49] Ochsenkühn-Petropulu M., Lyberopulu T., Parissakis G., Selective Separation and Determination of Scandium from Yttrium and Lanthanides in Red Mud by a Combined Ion Exchange/Solvent Extraction Method, Anal. Chim. Acta., 315:231-237 (1995).
[50] Fathi MB., Rezai B., Alamdari E.K., Competitive Adsorption Characteristics of Rhenium in Single and Binary (Re-Mo) Systems Using Purolite A170, Int. J. Miner. Process., 169:1-6 (2017).
[51] Shahmohammadi-Kalalagh S., Isotherm and Kinetic Studies on Adsorption Of Pb, Zn and Cu by Kaolinite, Casp. J. Environ. Sci., 9:243-255 (2011).
[52] Ba S., Ennaciri K., Yaacoubi A., Alagui A., Bacaoui A., Activated Carbon from Olive Wastes as an Adsorbent for Chromium Ions Removal, Iran. J.  Chem. Chem .Eng. (IJCCE), 37(6):107-123 (2018).
[53] Lou Z., Zhao Z., Li Y, Shan W., Xiong Y., Fang D., Yue Sh., Zang Sh., Contribution of Tertiary Amino Groups to Re (VII) Biosorption on Modified Corn Stalk: Competitiveness and Regularity, Bioresour. Technol., 133: 546-554 (2013).
[54] Dada A., Olalekan A., Olatunya A., Dada O., Langmuir, Freundlich, Temkin and Dubinin–Radushkevich Isotherms Studies of Equilibrium Sorption of Zn2+ unto Phosphoric Acid Modified Rice Husk, IOSR. J. Appl. Chem., 3(1):38-45 (2012).
[55] Günay A., Arslankaya E., Tosun I., Lead Removal from Aqueous Solution by Natural and Pretreated Clinoptilolite: Adsorption Equilibrium and Kinetics, J. Hazard. Mater., 146:362-371 (2007).
[56] Liu J., Wang X., Novel Silica-Based Hybrid Adsorbents: Lead (II) Adsorption Isotherms, Sci. World J., 2013: 362 – 371 (2013).
[58] Fathi M., Rezai B., Alamdari E., Alorro R., Studying Effects of Ion Exchange Resin Structure and Functional Groups on Re (VII) Adsorption onto Purolite A170 and Dowex 21K, J. Min. Reclam. Environ., 9:243-254 (2018).
[59] Treybal RE., "Mass Transfer Operations", McGraw-Hill Book Co., New York 466 (1973).
[60] Zhu Y, Hu J, Wang J., Competitive Adsorption of Pb (II), Cu (II) and Zn (II) onto Xanthate-Modified Magnetic Chitosan, J. Hazard. Mater., 221:155-161 (2012).
[61] Mahamadi C., Nharingo T., Competitive Adsorption of Pb2+, Cd2+ and Zn2+ Ions onto Eichhornia Crassipes in Binary and Ternary Systems, Bioresour. Technol., 101:859-864 (2010).
[63] Turanov A.N., Karandashev V.K., Sukhinina N.S., Masalov V.M., Emelchenko G.A., Adsorption of Lanthanides and Scandium Ions by Silica Sol-Gel Material Doped with Novel Bifunctional Ionic Liquid, Trioctylmethylammonium 1-Phenyl-3-Methyl-4-Benzoyl-5-Onate, J. Environ. Chem. Eng., 4:3788-3796 (2016).
[64] Komnitsas K., Zaharaki D., Bartzas G., Alevizos G., Adsorption of Scandium and Neodymium on Biochar Derived after Low-Temperature Pyrolysis of Sawdust, Minerals., 7: 200 (2017).
[65] Wu F-C., Tseng R-L., Juang R-S., Initial Behavior of Intraparticle Diffusion Model Used in the Description of Adsorption Kinetics, Chem. Eng. J., 153:1-8 (2009).
[66] Igwe J., Abia A., A Bioseparation Process for Removing Heavy Metals from Waste Water Using Biosorbents, Afr. J. Biotechnol., 5: (2006).
[68] Djawad F., Djamel N., Elhadj M., Samira A., Adsorption of Ni2+ Ions onto NaX and NaY Zeolites: Equilibrium, Kinetic, Intra Crystalline Diffusion and Thermodynamic Studies, Iran. J.  Chem. Chem. Eng. (IJCCE), 38(6): 63-81 (2018).
[69] Khawassek Y., Masoud A., Taha M., Hussein A., Kinetics and Thermodynamics of Uranium Ion Adsorption from Waste Solution Using Amberjet 1200 H as Cation Exchanger, J. Radioanal. Nucl. Chem., 315:493-502 (2018).
[70] Fil BA., Boncukcuoğlu R., Yilmaz AE., Bayar S., Adsorption of Ni (II) on Ion Exchange Resin: Kinetics, Equilibrium and Thermodynamic Studies, Korean J . Chem. Eng., 29:1232-1238 (2012).
[71] Gorimbo J., Taenzana B., Kapanji K., Jewell L.L., Equilibrium Ion Exchange Studies of Ni2+ on homoionic Forms of Clinoptilo, S. Afr. J. Sci., 110: 01-7 (2014).
[72] El-Naggar I., Zakaria E., Ali I., Khalil M., El-Shahat M., Kinetic Modeling Analysis for the Removal of Cesium Ions from Aqueous Solutions Using Polyaniline Titanotungstate, Arabian. J. Chem., 5: 109-119 (2012).
[73] Lazar L., Bandrabur B., Tataru-Fărmuş R-E., Drobotă M., Bulgariu L., Gutt G., FTIR Analysis of Ion Exchange Resins with Application In Permanent Hard Water Softening, Environ. Eng. Manage. J. (EEMJ), 13(9): (2014).
[75] Sheibley D.W., Fowler M.H., “Infrared Spectra of Various Metal Oxides the Region of 2 to 26 Microns”, National Aeronautics and Space Administration, Cleveland, Ohio. Lewis Research Center (1966).