The Exploitation of Xanthan Cryogels as Pattern for Edible Oleogel Preparation

Document Type : Research Article


Department of Food Science & Technology, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, I.R. IRAN


In this study, xanthan gum was used to produce cryogel and conversion of cryogel to oleo-gels, and the structural and chemical characteristics of the produced oleo-gels were investigated. Results showed, the produced oleo-gels (COS) contained about 66% oil content and they have able to holding oil at about 60%. The pseudo-second-order model can predict the oil absorption kinetics of cryogels. There was no difference between the number of fatty acids of sunflower oil and COS. 1H NMR and 13C NMR signals, the hydroperoxide (initial oxidation product), and aldehydes (secondary product oxidation) were not revealed in COS. Also, it was observed no exothermic process in the curve in Differential Thermal Analysis (DTA)curve up to 350 °C. AFM is the formation of a uniform, homogeneous, and stable gel network that matched the results of the mechanical properties of the COS.


Main Subjects

[1]  De Vries A., Hendriks J., Van Der Linden E., Scholten E., Protein Oleogels from Protein Hydrogels via a Stepwise Solvent Exchange Route, Langmuir., 31(51): 13850-13859 (2015).
[2] Manzocco L., Valoppi F., Calligaris S., Spilimbergo S., Nicoli M.C.,  Exploitation of κ-Carrageenan Aerogels as Template for Edible Oleogel Preparation, Food Hydrocolloids., 71: 68-75 (2017).
[3] Martins A.J., Silva P., Pastrana L.M., Cunha R.L., Cerqueira M.A., Vicente A.A., Hybrid Gels: Influence of Oleogel/Hydrogel Ratio on Rheological and Textural Properties, Food Res. Int., 116: 1298-1305 (2019).
[5] Qiu C., Huang Y., Li A., Ma D., Wang Y., Fabrication and Characterization of Oleogel Stabilized by Gelatin-Polyphenol-Polysaccharides Nanocomplexes, J. Agric. Food Chem., 66(50): 13243-13252 (2018).
[6] Demirkesen I., Mert B., Utilization of Beeswax Oleogel‐Shortening Mixtures in Gluten‐Free Bakery Products, J. Am. Oil Chem. Soc.,  (2019).
 [7] Da Silva T.L., Chaves K.F., Fernandes G.D., Rodrigues J.B., Bolini H.M., Arellano D.B., Sensory and Technological Evaluation of Margarines with Reduced Saturated Fatty Acid Contents Using Oleogel Technology, J. Am. Oil Chem. Soc., 95(6): 673-685 (2018).
 [8] Singh A., Auzanneau F.-I., Rogers M., Advances in Edible Oleogel Technologies–A Decade in Review, Food Res. Int., 97: 307-317 (2017).
[9] Saberian H., Hamidi Esfahani Z., Banakar A., Ohmic Heating of Aloe Vera Gel: Electrical Conductivity and Energy Efficiency, Iran. J. Chem. Chem. Eng.(IJCCE), 37(5): 157-165 (2018).
[10] Plieva F.M., Karlsson M., Aguilar M.-R., Gomez D., Mikhalovsky S., Galaev I.Y., Pore Structure in Supermacroporous Polyacrylamide Based Cryogels, Soft Matter., 1(4): 303-309 (2005).
[11] Humpolíček P., Radaszkiewicz K.A., Capáková Z., Pacherník J., Bober P., Kašpárková V., Rejmontová P., Lehocký M., Ponížil P., Stejskal J., Polyaniline Cryogels: Biocompatibility of Novel Conducting Macroporous Material, Scientific Reports, 8(1): 135 (2018).
[12] Phimolsiripol Y., Siripatrawan U., Henry C.J.K., Pasting Behaviour, Textural Properties and Freeze–Thaw Stability of Wheat Flour–Crude Malva Nut (Scaphium Scaphigerum) Gum System, J. Food Eng., 105(3): 557-562 (2011).
[14] Kumar A., Rao K.M., Han S.S., Application of Xanthan Gum as Polysaccharide in Tissue Engineering: A Review, Carbohydrate Polymers., 180: 128-144(2018).
[15] Giannouli P., Morris E., Cryogelation of Xanthan, Food Hydrocolloids, 17(4): 495-501 (2003).
[16] Gómez-Estaca J., Herrero A.M., Herranz B., Álvarez M.D., Jiménez-Colmenero F., Cofrades S., Characterization of Ethyl Cellulose and Beeswax Oleogels and their Suitability as Fat Replacers in Healthier Lipid Pâtés Development, Food Hydrocolloids., 87: 960-969 (2019).
[17] Feng J., Nguyen S.T., Fan Z., Duong H.M., Advanced fabrication and Oil Absorption Properties of Super-Hydrophobic Recycled Cellulose Aerogels, Chemical Engineering Journal, 270: 168-175(2015).
 [18] Da Silva S.L., Amaral J. Ribeiro T.M., Sebastião E.E., Vargas C., De Lima Franzen F., Schneider G., Lorenzo J.M., Fries L.L.M., Cichoski A.J., Fat Replacement by Oleogel Rich in Oleic Acid and Its Impact on the Technological, Nutritional, Oxidative, and Sensory Properties of Bologna-Type Sausages, Meat Science, 149: 141-148(2019).
[20] Pedro A.C., Bach F., Stafussa A.P., Menezes L.R.A., Barison A., Maciel G.M., Haminiuk C.W.I., 1H NMR And Raman Spectroscopy of Oils and Extracts Obtained From Organic and Conventional Goji Berries: Yield, Fatty Acids, Carotenoids and Biological Activities, Int. J. Food Sci. Technol., 54(1): 282-290 (2019).
[21] Ribeiro M.D.M., Ming C.C., Lopes T.I., Grimaldi R., Marsaioli A.J., Gonçalves L.A.G., Enzymatic Synthesis of Structured Lipids from Liquid and Fully Hydrogenated High Oleic Sunflower Oil, Int. J. Food Prop., 21(1): 702-716(2018).
[22] Moghtadaei M., Soltanizadeh N., Goli S.A.H., Production of Sesame Oil Oleogels Based on Beeswax and Application as Partial Substitutes of Animal Fat in Beef Burger, Food Res. Int., 108: 368-377 (2018).
[23] Zetzl A.K., Gravelle A.J., Kurylowicz M., Dutcher J., Barbut S., Marangoni A.G., Microstructure of Ethylcellulose Oleogels and its Relationship to Mechanical Properties, Food Structure, 2(1-2): 27-40 (2014).
 [24] Bonczar G., Wszołek M., Siuta A., The Effects of Certain Factors on the Properties of Yoghurt Made From Ewe’s Milk, Food Chemistry, 79(1): 85-91 (2002).
[25] Domagala J., Sady M., Grega T., Bonczar G., The Influence of Storage Time on Rheological Properties and Texture of Yoghurts with the Addition of Oat-Maltodextrin as the Fat Substitute, Int. J. Food Prop., 8(2): 395-404 (2005).
[26] Panagiotopoulou E., Moschakis T., Katsanidis E., Sunflower oil Organogels And Organogel-in-Water Emulsions (Part II): Implementation in Frankfurter Sausages, LWT, 73: 351-356 (2016).
 [27] Banerjee S., Bhattacharya S., Food Gels: Gelling Process and New Applications, Crit. Rev. Food Sci. Nutr., 52(4): 334-346 (2012).
[28] Rahman M.S., Al-Farsi S.A., Instrumental Texture Profile Analysis (TPA) of Date Flesh as a Function of Moisture Content, J. Food Eng., 66(4): 505-511 (2005).
[29] Li J., Vosegaard T., Guo Z., Applications of Nuclear Magnetic Resonance in Lipid Analyses: An Emerging Powerful Tool for Lipidomics Studies, Progress in Lipid Research, 68: 37-56 (2017).
[30] Kim B.-S., Takemasa M., Nishinari K., Synergistic Interaction of Xyloglucan and Xanthan Investigated by Rheology Differential Scanning Calorimetry, and NMR, Biomacromolecules, 7(4): 1223-1230 (2006).
[31] Knothe G., Kena J.A. r, Determination of the Fatty Acid Profile by 1H-NMR Spectroscopy, Euro Fed Lipid, 106(2): 88-96 (2004).
[32] Alonso-Salces R.M., Holland M.V., Guillou C., 1H-NMR Fingerprinting to Evaluate the Stability of Olive Oil, Food Control, 22(12): 2041-2046 (2011).
[34] Guillén M.D., Ruiz A., Monitoring the Oxidation of Unsaturated Oils and Formation of Oxygenated Aldehydes by Proton NMR, Euro. Fed. Lipid, 107(1): 36-47 (2005).