Parameters Optimization of Ultrasound-Assisted Deodorization of Sheep Tail Fat Using Response Surface Technique

Document Type : Research Article


1 Department of Biosystems Engineering, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, I.R. IRAN

2 Department of Food Science and Technology, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, I.R. IRAN


Sheep tail fat is a common frying oil in Iran due to its good flavor and stability. Deodorization is a high-temperature vacuum purification process for removing the volatile compounds from the edible fats and oils. In this paper, the effects of temperature, time, and ultrasound power on the quality attributes of sheep tail fat during the deodorization process were studied using response surface methodology. Variations of the acid value, peroxide value, iodine value, and saponification value, as well as extinction coefficient, were investigated. The best equations were created for the responses of acid value (R2 = 0.9143, p < 0.0001), peroxide value (R2 = 0.9862, p < 0.0001), iodine value (R2 = 0.9670, p < 0.0001), refractive index (R2 = 0.9816, p < 0.0001), saponification value (R2 = 0.9345, p < 0.0001) and extinction coefficient (R2 = 0.9562, p < 0.0001). Finally, the temperature of 200 ºC, the processing time of 80 min, and the ultrasound power of 307 W were recommended for the optimal conditions of sheep tail fat ultrasound-assisted deodorization.


Main Subjects

[1] Shahidi F., Zhong Y., Lipid Oxidation: Measurement Methods, Bailey's Industrial Oil and Fat Products, 250-289 (2005).
[2] Alipanah M., Kashan N. E., Fatty Acid Composition of Fat Tail, Visceral And Meat Fat of Three Iranian Sheep Breeds, J. Food Agric. Environ., 9: 416-418 (2011).
[3] Ferrari R. A., Schulte E., Esteves W., Brühl L., Mukherjee K., Minor Constituents of Vegetable Oils During Industrial Processing, J. Am. Oil Chem. Soc., 73(5): 587-592 (1996).
[4] Decap P., Braipson-Danthine S., Vanbrabant B., De Greyt W., Deroanne C., Comparison of Steam and Nitrogen in the Physical Deacidification of Soybean Oil, J. Am. Oil Chem. Soc., 81(6): 611-617 (2004).
[5] Gavin A. M., Edible Oil Deodorization, J. Am. Oil Chem. Soc., 55(11): 783-791 (1978).
[6] Wu T., Zivanovic S., Hayes D. G., Weiss J., Efficient Reduction of Chitosan Molecular Weight by High-Intensity Ultrasound: Underlying Mechanism and Effect of Process Parameters, J. Agric. Food Chem., 56(13): 5112-5119 (2008).
[7] Taghinezhad E., Rasooli Sharabiani V., Kaveh M., Modeling and Optimization of Hybrid HIR Drying Variables for Processing of Parboiled Paddy Using Response Surface Methodology, Iran. J. Chem. Chem. Eng. (IJCCE), 38(4): 251-260 (2019).
[8] Cucheval A., Chow R., A Study on the Emulsification of Oil by Power Ultrasound, Ultrason. Sonochem., 15(5): 916-920 (2008).
[9] Moulton K., Mounts T., Continuous Ultrasonic Degumming of Crude Soybean Oil, J. Am. Oil Chem. Soc., 67(1): 33-38 (1990).
[10] Zhang Z. S., Wang L. J., Li D., Jiao S. S., Chen X. D., Mao Z. H., Ultrasound-Assisted Extraction of Oil from Flaxseed, Sep. Purif. Technol., 62(1): 192-198 (2008).
[11] Jahouach-Rabai W., Trabelsi M., Van Hoed V., Adams A., Verhé R., De Kimpe N., Frikha M., Influence of Bleaching by Ultrasound on Fatty Acids and Minor Compounds of Olive Oil, Qualitative and Quantitative Analysis of Volatile Compounds (by SPME Coupled to GC/MS), Ultrason. Sonochem., 15(4): 590-597 (2008).
[12] Riener J., Noci F., Cronin D. A., Morgan D. J., Lyng J.G., Characterisation of Volatile Compounds Generated in Milk by High-Intensity Ultrasound, Int. Dairy J., 19(4): 269-272 (2009).
[13] Riyadi A. H., Muchtadi T. R., Andarwulan N., Haryati T., Pilot Plant Study of Red Palm Oil Deodorization Using Moderate Temperature, Agriculture and Agricultural Science Procedia, 9: 209-216 (2016).
[14] Ciğeroğlu Z., Kırbaşlar İ., Şahin S., Köprücü G., Optimization and Kinetic Studies of Ultrasound-Assisted Extraction on Polyphenols from Satsuma Mandarin (Citrus Unshiu Marc.) Leaves, Iran. J. Chem. Chem. Eng. (IJCCE), 36(5): 163-171 (2017).
[15] Khuri A. I., Mukhopadhyay S., Response Surface Methodology, Wiley Interdisciplinary Reviews: Computational Statistic, 2 (2): 128-49 (2010).
[16] Chew S. C., Tan C. P., Nyam K. L., Application of Response Surface Methodology for Optimizing the Deodorization Parameters in Chemical Refining of Kenaf Seed Oil, Sep. Purif.Technol., 184: 144-151 (2017).
[17] Ciğeroğlu Z., Aras Ö., Pinto C. A., Bayramoglu M., Kırbaşlar Ş. İ., Lorenzo J. M., Barba F. J., Saraiva J. A., Şahin S., Optimization of Ultrasound-Assisted Extraction of Phenolic Compounds from Grapefruit (Citrus Paradisi Macf.) Leaves via D-optimal Design and Artificial Neural Network Design with Categorical and Quantitative Variables, J. Sci. Food Agric., 98(12): 4584-4596 (2018).
[19] Shantha N. C., Decker E. A., Rapid, Sensitive, Iron-Based Spectrophotometric Methods for Determination of Perorlride Values of Food Lipids, Journal of AOAC International, 77(2): 421-424 (1994).
[20] Oueslati I., Taamalli W., Haddada F. M., Zarrouk M., Microwave Heating Effects on the Chemical Composition and the Antioxidant Capacity of Tataouine Virgin Olive Oils from Tunisia, J. Food Prot., 73(10): 1891-1901 (2010).
[21] AOAC, Official Method of Analysis, Arlington, VA: Association of Official Analytical Chemists (2000).
[22] Balvardi M., Rezaei K., Mendiola J. A., Ibáñez E., Optimization of the Aqueous Enzymatic Extraction of Oil from Iranian Wild Almond, J. Am. Oil Chem. Soc., 92(7): 985-992 (2015).
[23] Mortezapour H., Ghobadian B., Minaei S., Khoshtaghaza M. H., Saffron Drying with a Heat Pump–Assisted Hybrid Photovoltaic-Thermal Solar Dryer, Drying Technol., 30(6): 560-566 (2012).
[25] Chew S. C., Tan C. P., Long K., Nyam K. L., Effect of Chemical Refining on the Quality of Kenaf (Hibiscus cannabinus) Seed Oil, Ind. Crops Prod., 89: 59-65 (2016).
[26] de Oliveira D. A., Minozzo M. G., Licodiedoff S., Waszczynskyj N., Physicochemical and Sensory Characterization of Refined and Deodorized Tuna (Thunnus albacares) by-Product Oil Obtained by Enzymatic Hydrolysis, Food Chem., 207: 187-194 (2016).
[27] Ortega-García J., Gámez-Meza N., Noriega-Rodriguez J.A., Dennis-Quiñonez O., García-Galindo H. S., Angulo-Guerrero J. O., Medina-Juárez L. A., Refining of High Oleic Safflower Oil: Effect on the Sterols and Tocopherols Content, Eur. Food Res. Technol., 223(6): 775-779 (2006).
[28] Zacchi P., Eggers R., High‐Temperature pre‐Conditioning of Rapeseed: A Polyphenol‐Enriched Oil and the Effect of Refining, Eur. J. Lipid Sci. Technol., 110(2): 111-119 (2008).
[30] Tengku‐Rozaina T.M., Birch E.J., Physicochemical Characterisation and Oxidative Stability of Refined Hoki Oil, Unrefined Hoki Oil and Unrefined Tuna Oil, Int. J. Food Sci. Technol., 48(11): 2331-2339 (2013).
[31] Pandurangan M., Murugesan S., Gajivaradhan P., Physico-Chemical Properties of Groundnut Oil and Their Blends with Other Vegetable Oils, J. Chem. Pharm. Res., 6(8): 60-66 (2014).
[32] Knothe G., Structure Indices in FA Chemistry, How Relevant Is the Iodine Value?, J. Am. Oil Chem. Soc., 79(9): 847-854 (2002).
[33] Crexi V.T., Monte M. L., de Souza Soares L. A., Pinto L.A.A., Production and Refinement of Oil from Carp (Cyprinus carpio) Viscera, Food chem., 119(3): 945-950 (2010).
[34] Mayamol P., Balachandran C., Samuel T., Sundaresan A., Arumughan C., Process Technology for the Production of Micronutrient Rich Red Palm Olein, J. Am. Oil Chem. Soc., 84(6): 587-596 (2007).
[35] Karabulut I., Topcu A., Yorulmaz A., Tekin A., Ozay D.S., Effects of the Industrial Refining Process on Some Properties of Hazelnut Oil, Eur. J. Lipid Sci. Technol., 107(78): 476-480 (2005).
[36] Chew S. C., Tan C. P., Nyam K. L., Optimization of Neutralization Parameters in Chemical Refining of Kenaf Seed Oil by Response Surface Methodology, Ind. Crops Prod., 95: 742-750 (2017).
[37] Wei J., Chen L., Qiu X., Hu W., Sun H., Chen X., Bai Y., Gu X., Wang C., Chen H., Optimizing Refining Temperatures to Reduce the Loss of Essential Fatty Acids and Bioactive Compounds in Tea Seed Oil, Food and Bioproducts Processing, 94: 136-146 (2015).
[38] Martins P., Ito V., Batistella C., Maciel M. W., Free Fatty Acid Separation from Vegetable Oil Deodorizer Distillate Using Molecular Distillation Process, Sep. Purif. Technol., 48(1): 78-84 (2006).