Kinetic and Thermodynamic Study of Chromium Picolinate Removing from Aqueous Solution onto the Functionalized Multi-Walled Carbon Nano Tubes

Document Type : Review Article

Authors

1 Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, I.R. IRAN

2 Department of Chemistry, East Tehran Branch, Islamic Azad University, Tehran, I.R. IRAN

10.30492/ijcce.2020.38208

Abstract

In the present research, the Functionalized Multi-Walled Carbon Nano Tubes (FMWCNTs) were functionalized and then were characterized by using the Fourier Transform infrared spectroscopy (FT-IR), X-Ray powder Diffraction (XRD), Scanning Electron Microscopy (SEM), Brunauer –Emmett-Teller and Barett-Joyner –Halenda (BET/BJH) and Particle Size Analyzer (PSA) techniques.  Subsequently, the functionalized multi-walled carbon nanotubes were used to remove chromium picolinate (ChP) drug from the aqueous media, and its ability for ChP adsorption was also evaluated. To achieve this purpose, the effects of the various parameters such as pH, initial concentration of the sorbate, sorbent dosage, temperature, and contact time on the removal percentage of ChP drug onto the FMWCNTs adsorbent were studied and reported. Based on the experimental results, the optimum conditions to perform the adsorption experiments were determined. In addition, the experimental results were examined using some suitable isotherm models, and it was found that the Langmuir isotherm model is more suitable for fitting the results of the considered adsorption process. Finally, the kinetic and thermodynamic behavior of the ChP adsorption onto the FMWCNTs sorbent were considered and the related results indicated that the studied adsorption process is exothermic and exergonic and almost is physical adsorption. In addition, the kinetic results showed that the adsorption of ChP onto the FMWCNTs adsorbent obeys the pseudo-first-order reaction law from the kinetic point of view.

Keywords

Main Subjects


[1] Kim S.D., Cho J., Kim I..S., Vanderford B.J., Snyder S.A., Occurrence and removal of Pharmaceuticals and Endocrine Disruptors in South Korean Surface, Drinking, and Waste Waters, Water Research, 41: 1013 (2007).
[2] Homem V., Santos L., Degradation and Removal Methods of Antibiotics from Aqueous Matrices– A Review, J. Environ. Manage, 92(10):  2304-2347 (2011).
[3] Magureanu M., Piroi  D., Mandache N.B., David V., Medvedovici A., Bradu C., Parvulescu  V.I., Degradation of Antibiotics in Water by Non-Thermal Plasma Treatment, Water Research, 45(11): 3407-3416 ( 2011).
[4] Tahir S S., Naseem R., Removal of Cr (III) from Tannery Wastewater by Adsorption onto Betonies Clay, Sep. Purif. Tech, 53(3): 312-321 (2007).
[5] Ravina A., Slezak l., Rubal A., et.al., Clinical use of the Trace Element Chromium (III) in the Treatment of The Diabetes Mellitus, Trace Element in Experimental Medicine, 8: 183-190 (1995).
[6] Jovanovic-Petersen l., Gutierrez M., Peterson C.M., Chromium Supplementation for Gestational Diabetic Women Improves Glucose Tolerance and Decreases Hyper Insulinemia, J. American College of Nutrition, 14: 530 (1995).
[7] Anderson R.A., Chromium Glucose in Tolerance and Diabetes, J.American College of Nutrition, 17: 548-555 (1998).
[8] Bondarczuk K., Piotrowska-Seget Z., Microbial Diversity and Antibiotic Resistance in a Final Effluent-Receiving Lake, Sci. Total Environ., 650: 2951–2961 (2019).
[9] Slavinskaya G.V., Selemenev V.F., Ozonation of Fulvic Acids of Natural Waters in Aqueous Solutions, Russ. J. Appl. Chem., 76(9): 1472-147 (2003)  .
[11] Barkat M., Chegrouche S., Mellah A., Bensmain B., Nibou D., Boufatit M., Application of Algerian Bentonite in the Removal of Cadmium (II) and Chromium (VI) from Aqueous Solutions, J. Surf. Eng. Mater. Adv. Technol., 4(4): 210-  (2014).
[12] Grekov  K.B., Application of the Nanofiltration Method in Systems for Recycling of Washing Water in Photographic Development of Motion-Picture Films, Russ. J. Appl. Chem , 78(4): 599-601 (2005).
[13] Raji C ., Anirudhan T. S., Batch Cr (VI) Removal by Polyacrylamide-Grafted Sawdust: Kinetics and Thermodynamics, Water Research, 32(12): 3772-3780 (1998).
[14]  Malkoc E ., Nuhoglu Y., Investigations of Nickel (II) Removal from Aqueous Solutions Using Tea Factory Waste, J. Hazard. Mater,127(1-3): 120-128 (2005) .
[15] Demirbas E ., Kobya  M ., Senturk  E .,  Ozkan  T, Adsorption Kinetics for the Removal of Chromium (VI) from Aqueous Solutions on the Activated Carbons Prepared from Agricultural Wastes, Water Sa, 30(4): 533-539 (2004).
[16] Bari  F ., Begum  N., Jamaludin  S B ., Hussin K., Extraction and Separation of Cu (II), Ni (II) and Zn (II) by Sol-Gel Silica Immobilized with Cyanex 272, Hydrometallurgy, 96(12): 140-147 (2009).
[17]  Madrakian T., Afkhami A., Ahmadi M., Bagheri H., Removal of Some Cationic Dyes from Aqueous Solutions Using Magnetic-Modified Multi-Walled Carbon Nanotubes, J. Hazard. Mater, 196: 109-114 (2011).
[18]  Babaei A.A., Lima E.C., Takdastan A., Alavi N., Goudarzi G., Vosoughi M., Hassani G., Shirmardi, M. Removal of Tetracycline Antibiotic from Contaminated Water Media by Multi-Walled Carbon Nanotubes: Operational Variables, Kinetics, and Equilibrium Studies, Water Sci. Techno.l,74: 1202–1216 (2016).
[19]  Kasperiski F.M., Lima  E.C., Umpierres C.S., dos Reis  G.S., Thue P.S., Lima D.R., Dias S.L.P., Saucier C., da Costa J.B., Production of Porous Activated Carbons from Caesalpinia Ferrea Seed Pod Wastes: Highly Efficient Removal of Captopril from Aqueous Solutions, J. Clean Prod., 197: 919–929 (2018).
[20] Lima1 D.R., Lima1 E.C., Umpierres C.S., Thue P.S., El-Chaghaby G.A., da Silva, R.S., Pavan F.A., Dias S.L.P., Biron C., Removal of Amoxicillin from Simulated Hospital Effluents by Adsorption Using Activated Carbons Prepared from Capsules of Cashew of Para, Environmental Science and Pollution Research, 26(16):16396-16408 (2019).
[21] Sadegh  H.R., Goma, A.M.A., Gupta,  V.K., Hamdy Makhlouf, A.S., Shahryari-Ghoshekandi R., Mallikarjuna N., Nadagouda Sillanpa M., Megiel E., The Role of Nanomaterials as Effective Adsorbents and their Applications in Wastewater Treatment,
J. Nanostruct. Chem., 7:1–14 (2017).
[22] Mohammadi  A ., Kazemipour  M ., Ranjbar H., Walker  R.B ., Ansari  M. Amoxicillin Removal from Aqueous Media Using Multi-Walled Carbon Nanotubes. Fullerenes, Nanotubes and Carbon Nanostructures, 23: 165–169 (2015).
[23] Madrakian T., Afkhami A., Ahmadi M., Bagheri H ., Removal of Some Cationic Dyes from Aqueous Solutions Using Magnetic-Modified Multi-Walled Carbon Nanotubes, Journal of Hazardous Materials,196: 09-14 (2011).
[24] Iijima S ., Helical Microtubules of Graphitic Carbon, J. Nature, 354: 56-58 (1991).
[25] Iijima S., Ichihashi T., Single-Sell Carbon Nanotubesof 1-nmdiameter, J. Nature., 363: 603-605 (1993).
[26] Yang K., Zhu L., Xing  B., Adsorption of Polycyclic Aromatic Hydrocarbon by Carbon Nonomaterials, J. Environmental Science & Technology, 40: 1855-1861 (2006 ).
[27] Yang K., Wang X., Zhu L., Xing  B., Competitive Sorption of Pyrene, Phananthrene, and Naphthalene on Multiwalled Carbon Nanotubes, J. Environmental Science & Technology; 40:5804-5810 (2006).
[29] Sadegh  H.R., Goma  A.M.A ., Agarwal  S ., Gupta  V.K., Surface Modification of MWCNTs with Carboxylic‑to‑Amine and Their Superb Adsorption Performance. International Journal of Environmental Research (2019).
[30] Goma A.M.A., Lih Teo E.Y., Aboelazm EAA., Sadegh HR., Memar  AOH., Shahryari-Ghoshekandi  R., Chong  KF., Capacitive Performance of Cysteamine Functionalized Carbon NanotubesMaterials Chemistry and Physics, 197: 100-104 (2017).
[31] Gupta V.K ., Tyagia   I .,  Agarwala  S. , Moradid O., Sadegh H ., Shahryari-Ghoshekandid  R ., Makhloufe  A.S.H ., Goodarzif  M ., Garshasbig  A, Study on the Removal of Heavy Metal Ions from Industry Waste by Carbon Nanotubes, Effect of the Surface Modification-A Review, Critical Reviews in Environmental Science and Technology 46(2): 93-118( 2015).
[32] Sadegh H.R ., Zare  K. , Maazinejad  B. , Shahryari-Ghoshekandi R ., Tyagi  I. , Agarwal S. , Gupta  VK., Synthesis of MWCNT-COOH-Cysteamine Composite and its Application for Dye Removal. Journal of Molecular Liquids, 215: 221–228 (2016).
[33] Sadegh  H.R., Goma  A.M.A., Hamdy Makhlouf A.S., Chong K.F., Alharbi N.S.,  Agarwal S., Gupta V.K., MWCNTs-Fe3O4 Nanocomposite for Hg(II) High Adsorption Efficiency. Journal of Molecular Liquids,258345-353 (2018).
[34] Taghi Samadi M., Shokoohi R., Araghchian  M., Tarlani A., Amoxiciline Removal from Aquatic Solutions Using Multi-Walled Carbon Nanotubes, Journal of Mazandaran University of Medical Sciences, 24(117):103-115 (2014). 
[35] BalarakD.,  Kord Mostafapour F., Akbari H. , JoghtaeiA, Adsorption of Amoxicillin Antibiotic from Pharmaceutical Wastewater by Activated  Carbon Prepared from Azolla filiculoides, Journal of Pharmaceutical Research International,  18(3): 1-13 (2017).    
[36] Sharifi  A., Montazerghaem  L ., Naeimi A ., Rajabi Abhari A ., Vafaee M .,  Goma  A.M.A. , Sadeghg H.R., Investigation of Photocatalytic Behavior of Modified ZnS:Mn/MWCNTs Nanocomposite for Organic Pollutants Effective Photodegradation. Journal of Environmental Management, 247: 624–632 (2019).
[37] Gupta V.K. , Agarwal  S ., Bharti  A.K. , Sadegh  H.R, Adsorption Mechanism of Functionalized Multi-Walled Carbon Nanotubes for Advanced Cu (II) Removal, Journal of Molecular Liquids, 230: 667-673 (2017)
[38] Sadegh, H.R., Shahryari-Ghoshekandi R., Agarwal  S., Tyagi I., Asif  M., Gupta  V.K., Microwave-Assisted Removal o Malachite Green by Carboxylatem Functionalized Multi-Walled Carbon Nanotubes: Kinetics and Equilibrium Study, Journal of Molecular Liquids, 206:151-158 (2015).
[39] Langmuir I., The Constitution and Fundamental Properties of Solids and Liquids, Part I.Solids. J. Am. Chem. Soc.,38(11): 2221-2295 (1916).   
[40] Pashai Gatabi M, Milani Moghaddam H., Ghorbani M., Efficient Removal of Cadimium Using Magnetic Multi-Walled Carbon Nanotube Nano Adsorbents: Equilibrium, Kinetic and Thermodynamic Study, J.Nanopart Res, 18: 189(2016).
[41] Moradi O., Zare K., Monajjemi M., Yari M., Aghaie H., The Studies of Equilibrium and ThermodynamicAdsorption of Pb(II), Cd(II) and Cu(II) Ions from Aqueous Solution onto SWCNTs and SWCNTCOOHS Urfaces, Fullerenes, Nanotubes and Carbon Nanostructures, 18: 285302 (2010).
[42]  Mahmoodi  Z., Aghaie  H., Fazaeli R, Adsorption Study of Violet 8and Congo Red Dyes onto Aloe Vera, Physic. Chem. Res., 7(3): 547-560 (2019).
[44] Konabey J., Ghorbani M.H., Aghaie H., Fazel R, Study of the Adsorption and Photo Catalyst Properties of Copper Oxide with Different Morphologies In Removal of Cr(III) From Aqueous Media Water Science and Technology (in press) (2019).
[45]  Rengaraj S., Jooc K., Kim Y., Yi Y., Kinetics of Removal Chromium from Water and Electronic Process Waste Water by Ion Exchange Resins:1200H,1500H and IRN97H, J. Hazard. Mater., B102: 257-275 (2003).
[46] Moghaddam M., Rahdar S., Taghavi M., Cadmium Removal from Aqueous Solutions Using Saxaul Tree Ash. Iran. J. Chem. Chem. Eng. (IJCCE), 35(3): 45-52 (2016).
[48] Olgun A., Atar N., Removal of Copper and Cobalt from Aqueous Solution onto Waste Containing Boron Impurity, Chem. Eng.  J, 167(1): 140-147 (2011).
[49] Lu C., Chiu H., Liu C., Removal of Zinc (II) from Aqueous Solution by Purified Nano Tubes, Kinetics and Equilibrium Studies, Ind. Eng. Chem.Res, 45: 2850-2855 (2006).
[50] Kanthapazham R., Ayyavu C., Maheniradas, Removal of Pb (II), Ni(II), Cd(II) Ion in Aqueous Media Using  Functionalized MWCNT Wrapped Polypyrrole Nano Composite, Desalination and water treatment, 57(36): 16871-16885 (2016).
[51] Moradi O., The Removal of Ion by Functionalized Carbon Nanotube Equilibrium Isotherm and Thermodynamic Studies, J. Chemical and Biochemical Engineering, 25(2): 222-240 (2011).
[52] Moradi O., Zare K., Adsorption of Pb(II), Cu(II), Cd(II)ions in Aqueous Solution on SWCNTS and SWCNT-COOH Surfaces Kinetics Studies, J. Fullerenes, Nanotubes and Carbon Nano Structure, 19: 628-652 (2011).
[53] Kalavathy H., Karthik B., Miranda L.R., Removal and recovery of Ni and Zn from Aqueous Solution using Activated Carbon from Hevea Brasiliensis: Batch and Column Studies, Colloids Surf. B. Biointerfaces, 78(2):  291-302 (2010).
[54] Faghihian H., Rasekh M., Removal of Chromate from Aqueous Solution by a Novel Clinoptilolite- Polyanillin Composite. Iran. J. Chem. Chem. Eng (IJCCE), 33 (1):1-130 (2014).
[55] Esmaeili A., Ghasemi S., Zamani F., Investigation of Cr(VI) Adsorption by Dried Brown Algae Sargassum sp. and Its Activated Carbon, Iran. J. Chem. Chem. Eng. (IJCCE), 31(4): 1-136 (2012).
[56]  Ho Y S., McKay G., Pseudo-Second Order Model for Sorption Processes, Process Biochemistry, 34(5): 451-465 1999).
[57]  Malkoc  E., Removal Ni (II) from Aqueous Solutions Using Cone Biomass of Thuja Orientalis, J. Hazard. Mater. 137(2): 899-908 (2006).
[58] Ho Y.S, Adsorption of Heavy Metals from Waste Streams by Peat, Ph.D. Thesis, The University of Birmingham. (1995).
[59] Ho Y S., McKay G., Kinetic Models for the Sorption of Dye from Aqueous Solution by Wood, Process Safety and Environmental Protection, 76(2): 183-191 (1998).
[60] Khezami L., Capart, R., Removal of Chromium (VI) From Aqueous Solution by Activated Carbons: Kinetic and Equilibrium Studies, J. Hazard. Mater, 123(1-3): 223-231 (2005).
[61] Rajaei G., Aghaie H., Zare K., Aghaie M., Adsorption of Cu(II) and Zn(II) Ions from Aqueous Solutions onto Fine Powder of Typha latifolia L. Root: Kinetics and Isotherm Studies, Research on Chemical Intermediates, 39: 3579-3594 (2013).
[62] Ho Y S., McKay G., Batch Lead (II) Removal from Aqueous Solution by Peat: Equilibrium and Kinetics, Trans I Chem E, 77(part B): 165-173 (1999).
[63] Teker M., Imamoğlu M., Saltabaş Ö, Adsorption of Copper and Cadmium Ions by Activated Carbon from Rice Hulls, Turk. J. Chem., 23(2): 185-192 (1999).