Predicting Solute Transport Parameters in Saturated Porous Media Using Hybrid Algorithm

Document Type : Research Article


1 Laboratoire de Matériaux Catalytiques et Catalyseen Chimie Organique, Université des Sciences et de la Technologie Houari Boumédiène, Alger, ALGÉRIE

2 Laboratoire de Recherche en Génie Civil, Hydraulique, Développement Durable et Environnement, Université Mohamed Kheider, Biskra, ALGÉRIE


This study aims to estimate the solute transport parameters in saturated porous media using a hybrid algorithm. In this study, the Physical Non-Equilibrium (PNE) model was used to describe the transport of solutes in porous media. A numerical solution for the PNE model is obtained using the Finite Volume Method (FVM) based on the Ttri-Diagonal Matrix Algorithm (TDMA). The developed program, written in Matlab, is capable to solve the advection-dispersion (ADE) and the PNE equations for the mobile -immobile (MIM)model with linear sorption isotherm. The Solute transport parameters, (immobile water content, mass transfer coefficient, and dispersion coefficient), are estimated using different algorithms such as the Levenberg-Marquardt algorithm (LM), genetic algorithm (GA), simulated annealing algorithm (SA). To overcome the limitations of deterministic optimization models which are rather unstable and divergent around a local minimum, a hybrid algorithm (GA+LM, SA+LM) permits to estimate of the solute transport parameters. Numerical solutions are verified using the experiments conducted by Semra (2003) which are about the transport of toluene through a column composed of impregnated Chromosorb grains at ambient temperature (20 °C) for three flow rates (1, 2 and 5ml/min). The results show that the hybrid algorithm (GA+LM, SA+LM) is more accurate than others (GA, SA, and LM). Comparing to the ADE model, The PNE with linear isotherm model gives a better description to the BeakThrough Curves (BTCs) with higher values of determination coefficient (R2) and lower values of Root Mean Square Error (RMSE). Also, the solute transport parameters tended to vary with the flow rate.


Main Subjects

[1] Alwan G.M., Improving Operability of Lab-Scale Spouted Bed Using GlobalStochastic Optimization, Journal of Engineering Research and Applications,5: 136-146 (2015).
[2] Chen Y.M., Abriola L.M., Alvarez P.J.J., Anid P.J., Vogel T.M., Modeling Transport and Biodegradation of Benzene and Toluene in Sand Aquifer Material: Comparison with Experimental Measurements, Water Resour. Res, 28(7): 1833-1847 (1992).
[3] Clothier B.E., Kirkham M.B., Mclean J.E., In Situ Measurement of the Effective Transport Volume for Solute Moving Through Soil, Soil Sci. Soc. Am. J.,56: 733-736 (1992).
[4] Coats K.H., Smith B.D., Dead-End Pore Volume and Dispersion in Porous Media. Soc. Pet. Eng. J., 4: 73-84 (1964).
[5] De Smedt F., Wierenga P.J., Solute Transfer Through Columns of Glass Beads, WaterResour. Res., 20: 225-232 (1984).
[6] Giacobbo F., Marseguerra M., Zio E., Solving the Inverse Problem of Parameter Estimation by Genetic Algorithms: The Case of a Groundwater Contaminant Transport Model, Annals of Nuclear Energy,29: 967–981 (2002).
[8] Jaynes D.B., Logsdon S.D., Horton R., Field Method for Measuring Mobile/Immobile Water Content and Solute Transfer Rate Coefficient, Soil Sci. Soc. Am. J., 59: 352-356 (1995).
[9] Kabouche A., Meniai A., Hasseine A., Estimation of Coalescence Parameters in an Agitated Extraction Column Using a Hybrid Algorithm, Chem. Eng. Technol.,34(5): 784–790 (2011).
[11] Manuel Alejandro Salaices Avila, "Experiment and Modeling of the Competitive Sorption And Transport of Chlorinated Ethenes in Porous Media", Göttingen–Germany, (2005).
[12] Masciopinto C., Passarella G., Mass-Transfer Impact on Solute Mobility in Porous Media: a New Mobile-Immobile Model, J. Contam. Hydrol.,215: 21-28 (2018).
[14] Merzougui A., Hasseine A., Laiadi D., Liquid-Liquid Equilibria of {N-Heptane + Toluene + Aniline} Ternary System: Experimental Data and Correlation, Fluid Phase Equilib. 308: 142–146 (2011).
[15] Nelson P.A., Galloway, T.R., Particle to Fluid Heat and Mass Transfer in Dense System to Fine Particles, Chemical Engineering Science. 30: 1-6 (1975).
[16] Padilla I.Y., Jim Yeh T.-C., Conklin M.H., The Effect of Water Content on Solute Transport in Unsaturated Porous Media, Water Resources Research, 35: 3303–3313 (1999).
[17] Patankar S.V., "Numerical Heat Transfer And Fluid Flow", USA: New York, Mcgraw-Hill Book Company, (1980).
[18] Peralta R.C., "Groundwater Optimization Handbook: Flow, Contaminant Transport, and Conjunctive Management", Boca Raton, CRC Press, p.532, (2012).
[19] Perkins T.K., Johnston O.C., A Review of Diffusion and Dispersion in Porous Media, Society of Petroleum Engineers Journal,3: 7&84, (1963).
[20] Sardin M., Schweich D., Leij F.J., Van Genuchten M.Th., Modeling the Nonequilibrium Transport of Linearly Interacting Solutes in Porous Media: a Review, Water Resources Research,27: 2287-2307 (1991).
[21] Selim H.M., Ma L., "Physical Non-Equilibrium in Soils: Modeling and Application", Ann Arbor Press, Inc., Chelsea, Mich, (1998).
[23] Semra S., "Dispersion Réactive En Milieu Poreux Naturel", Thèse, Génie Des Procédés. Nancy, INPL, (2003).
[24] Shahram Shahmohammadi-Kalalagh, Modeling Contaminant Transport In Saturated Soil Column With The Continuous Time Random Walk, Journal Of Porous Media, 18: 1181-1186 (2015).
[25] Sharma P.K., Shukla S.K., Rahul Choudhary, Deepak Swami, Modeling for Solute Transport in Mobile–Immobile Soil Column Experiment, ISH Journal of Hydraulic Engineering, (2016).
[26] Suresh A.Kartha, Srivastava R., Effect of Immobile Water Content Contaminant Transport in Unsaturated Zone, Journal of Hydro-Environment Research, 1: 206-215 (2008).
[27] Van Genuchten M.Th., Cleary R.W., "Movement of Solutes in Soil: Computer Simulated And Laboratory Results", Chap. 10 In: Soil Chemistry: B. Physicochemical Model, G.H. Bolt, (Ed.), Elsevier, Amsterdam, (1979).
[28] Van Genuchten M. Th., Non-Equilibrium Transport Parameters From Miscible Displacement Experiments, Res. Rep. No. 119, U.S. Salinity Lab. USDA, ARS, Riverside, CA, (1981).
[30] Zheng C., Bennet G.D., "Applied Contaminant Transport Modeling: Theory and Practice", van Nostrand Reinhold, New York, 464 P, (1995).