Optimization of Bacterial Nano-Cellulose Production in Bench-Scale Rotating Biological Contact Bioreactor by Response Surface Methodology

Document Type : Research Article


Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, P.O. Box 15875-1774 Tehran, I.R. IRAN


The main challenge in bacterial cellulose nanofibers production is low yield and high cost. The aim of this work is to optimize bacterial nano-cellulose production in the bench-scale rotating biofilm contact (RBC) bioreactor using experimental design. At all of experiments the Acetobacter Xylinum BPR2001 and culture medium molasses – CSL were used. Three effective factors in the three levels including rotation (10, 13 and 16 rpm), aeration (0.2, 0.5 and 0.8 vvm) and disk distance (1, 1.5 and 2 cm) were optimized by response surface experimental design. The optimum conditions of biocellulose production were rotation rate 13 rpm, aeration 0.5 vvm and disk distance 1.5 cm. The maximum dry weight of bacterial cellulose production reached 11.65 g/l in the 7th day, Which is one of the highest amounts of bacterial cellulose ever reported. Reduced quadratic models were used to final dry weight and moisture content of bacterial cellulose responses. ANOVA results showed the p-values were less than 0.05 that are significant models.


Main Subjects

[1] Jonas R., Farah L.F., Production and application of Microbial Cellulose, Polym. Degrad. Stabil., 59: 101-106 (1998).
[2] Czaja W.K., Young D.J., Kawecki M., Brown R.M., The Future Prospects of Microbial Cellulose in Biomedical Applications, Biomacromolecules, 8(1): 1-12 (2007).
[3] Krystynowicz A., Czaja W., Wiktorowska-Jezierska A., Gonc¸alves-Mis´kiewicz M., Turkiewicz M., Bielecki S., Factors Affecting the Yield and Properties of Bacterial Cellulose, J. Ind. Microb. Biotech., 29: 189-195 (2002).
[4] Lin S.P., Calvar I.L., Catchmark J.M., Liu J.R., Demirci A., Cheng K.C., Biosynthesis, Production and Applications of Bacterial Cellulose, Cellulose. 20(5): 2191-2219 (2013).
[6] Ebrahimi E., Babaeipour V., Meftahi A., Alibakhshi S., Effects of Bio-Production Process Parameters on Bacterial Cellulose Mechanical Properties, J. Chem. Eng. Jpn., 50(11):857-861, (2017).
[7] Chao Y., Mitarai M., Sugano Y., Shoda M., Effect of Addition p Water-Soluble Polysaccharides pn Bacterial Cellulose Production in a 50-L Airlift Reactor, Biotechnol. Progr., 17: 781–785 (2001).
[8] Jung J.Y., Khan T., Park J.K., Chang H.N., Production of Bacterial Cellulose by Gluconacetobacter hansenii Using a Novel Bioreactor Equipped with a Spin Filter, Korean J. Chem. Eng., 24: 265–271 (2007).
[9] Sumate T., Pramote T., Waravut K., Pattarasinee B., Effect of Dissolved Oxygen on Cellulose Production by Acetobacter sp., J. Sci. Res. Chula. Univ., 30: 179-186 (2005).
[10] Kim Y.J., Kim J.N., Wee Y.J., Park D.H., Bacterial Cellulose Production by Gluconacetobacter sp. RKY in a Rotary Biofilm Contactor, Appl. Biochem. Biotechnol., 137-140(1-12): 529-37 (2007).
[11] Hamid M., Babaeipour V., Imani M., Bahrami A., Dissolution and Regeneration of the produced Nano Bacterial Cellulose of Food Industries Wastewaters by a Cost Benefit Method, Iran. J. Chem. Chem. Eng. (IJCCE), 38(3): 9-21 (2019).
[12] Kouda T., Yano H., Yoshinaga F., Effect of Agitator Configuration on Bacterial Cellulose Productivity in Aerated and Agitated Culture, J. Ferment Bioeng., 83: 371- 376 (1997).
[13] Babaeipour V., Haji Abbas M.P., Sahebnazar Z., Alizadeh R., Enhancement of Human Granulocyte-Colony Stimulating Factor Production in Recombinant E. Coli Using Batch Cultivation, Bioprocess Biosyst Eng., 33: 591–598 (2010).
[14] Jimnez-Contreras E., Torres-Salinas D., Moreno R.B., Baños R.R., López-Cózar E.D., Response Surface Methodology and its Application in Evaluating Scientific Activity, Scientometrics, 79(1): 201-218 (2009).
[15] Rastegar S.O., Mousavi S.M., Shojaosadati S.A., Sheibani S., Optimization of Petroleum Refinery Effluent Treatment in a UASB Reactor Using Response Surface Methodology, J. Hazard. Mater., 197: 26– 32 (2011).
[16] Montgomery D.C., “Design and Analysis of Experiments”, 6th ed., John Wiley & Sons, Inc., New York (2012).
[17] Seyfi R., Babaeipour V., Mofid M.A., Abarghooi Kahaki F., Expression and Soluble Over-Production of recombinant Scorpine as a Potassium Channel Blocker Protein in E. coli, Biotechnol. Appl. Biochem. 66(1): 119-129 (2019).
[18] Morowvat M. H., Babaeipour V., Rajabi Memari H., Vahidi H., Optimization of Fermentation Conditions for Recombinant Human Interferon Beta Production by Escherichia coli Using the Response Surface Methodology, Jundishapur J. Microbiol.,8(4): e16236 (2015).
[19] Rastegar S.O., Mousavi S.M., Shojaosadati S.A., Rezaei M., Statistical Evaluation and Optimization of Effective Parameters in Bioleaching of Metals from Molybdenite Concentrate Using Acidianus brierleyi, J. Ind. Eng. Chem., 20: 3096-3101 (2013). 
[20] Li Z., Liu Y., Performing Response Surface Analysis Using the SAS RSREG Procedure, Paper DV02.2012 (2012).
[21] Czaja W., Krystynowicz A., Bielecki S., Brown R.M., Microbial Cellulose-the Natural Power to Heal Wounds, Biomaterials, 27: 145-151 (2006).
[22] Hult E., Yamanaka S., Ishihara M., Sugiyama J., Aggregation of Ribbons in Bacterial Cellulose Induced by High Pressure Incubation, Carbohyd Polym., 53: 9-14 (2003).