Cattaneo-Christov Heat Flux Model of Eyring Powell Fluid Along with Convective Boundary Conditions

Document Type : Review Article


1 Department of Mathematics, COMSATS University Islamabad, Islamabad 44000, PAKISTAN

2 School of Mathematics, Thapar Institute of Engineering & Technology, Patiala-147004, INDIA


Heat and mass transfer effects in three-dimensional mixed convection flow of Eyring Powell fluid over an exponentially stretching surface with convective boundary conditions are inspected. Cattaneo-Christov Heat Flux model is a modified version of the classical Fourier's law that takes into account the interesting aspect of thermal relaxation time. First-order chemical reaction effects are also taken into account. Similarity transformations are invoked to reduce the leading boundary layer partial differential equations into the ordinary differential equations. The nonlinear, coupled ordinary differential with boundary conditions has been analyzed numerically by using the Finite Element Method.


Main Subjects

[1] Crane L. J., Flow Past a Stretching Plate, J. App. Math Phys. (ZAMP), 21: 645-647 (1970).
[2] Andersson H.I., Bech K.H., Dandapat B.S., Magnetohydrodynamic flow of a power-law fluid over a stretching sheet, Int. J. Non-Lin. Mech., 27(6): 929-936 (1992).
[3] Hayat T., Ashraf M.B., Alsulami H.H., Alhuthali M.S., Three-Dimensional Mixed Convection Flow of Viscoelastic Fluid with Thermal Radiation and Convective Conditions, Plos. One., 9(3): e90038 (2014).
[4] Aksoy Y., Pakdemirli M., Khalique C.M., Boundary-Layer Equations and Stretching Sheet Solutions for the Modified Second Grade Fluid, Int. J. Eng. Sci., 45(10): 829-41 (2007).
[5] Bilal Ashraf M, Hayat T, Alhuthali M.S., Three-Dimensional Flow of Maxwell Fluid with Soret and Dufour Effects, J. Aerospace Eng., 29(3): 04015065 (2015).
[6] Al-Odat M.Q., Damesh R.A., Al-Azab T.A., Thermal Boundary Layer on an Exponentially Stretching Continuous Surface in the Presence of Magnetic Field, Int. J. App. Mech. Eng., 11: 289-299 (2006).
[7] Nadeem S., Lee C., Boundary Layer Flow of Nanofluid over an Exponentially Stretching Surface, Nanoscale Res. Lett., 7: 94 (2012).
[8] Bhattacharyya K., Boundary Layer Flow and Heat Transfer over an Exponentially Shrinking Sheet, Chinese Phys. Lett., 28: 074701 (2011).
[9] Mukhopadhyay S., Vajravelu K., Gorder R.A.V., Casson Fluid Flow and Heat Transfer at an Exponentially Stretching Permeable Surface, J. App. Mech., 80: 054502 (2013).
[10] Liu I.C., Wang H.H., Peng Y.F., Flow and Heat Transfer for Three Dimensional Flow over an Exponentially Stretching Surface, Chem. Eng. Comm., 200: 253-268 (2013).
[11] Bilal Ashraf M., Hayat T., Shehzad S.A., Malaikah H., Three Dimensional Flow of a Viscoelastic Fluid on an Exponentially Stretching Surface, J. App. Mech. Tech. Phys., 57: 446-456 (2016).
[12] Mukhopadhyay S., Layek G.C., Samad S.K.A, Study of MHD Boundary Layer Flow over a Heated Stretching Sheet with Variable Viscosity, Int. J. Heat Mass Trans., 48: 4460-4466 (2005).
[13] Motsa S.S., Hayat T., Aldossary O.M., MHD Flow of Upper- Convected Maxwell Fluid over Porous Stretching Sheet Using Successive Taylor Series Linearization Method, Appl. Math  Mech., 33: 975-990 (2012).
[14] Rashidi M.M., Erfani E., A New Analytical Study of MHD Stagnation-Point Flow in Porous Media with Heat Transfer, Comput. Fluids, 40: 172-178 (2011).
[16] Howell J.R., Menguc M.P., Siegel R., “Thermal Radiation Heat Transfer”, CRC Press, (2015).
[17] Sheikholeslami M, Haq R.U, Shafee A., Li Z., Elaraki Y.G., Tlili I, Heat Transfer Simulation of Heat Storage Unit with Nanoparticles and Fins Through a Heat Exchanger, Int. J. Heat Mass Trans., 135:470-8 (2019).
[18] Sheikholeslami M, Haq R.U., Shafee A., Li Z, Heat Transfer Behavior of Nanoparticle Enhanced PCM Solidification Through an Enclosure with V-Shaped Fins, Int. J. Heat Mass Trans, 130:1322-42 (2019).
[19] Sheikholeslami M., Rezaeianjouybari B., Darzi M., Shafee A., Li Z., Nguyen T.K., Application of Nano-Refrigerant for Boiling Heat Transfer Enhancement Employing an Experimental Study, Int. J. Heat Mass Trans., 141: 974-80 (2019).
[20] Sheikholeslami M., Jafaryar M., Hedayat M., Shafee A., Li Z., Nguyen T.K., Bakouri M, Heat Transfer and Turbulent Simulation of Nanomaterial Due to Compound Turbulator Including Irreversibility Analysis, Int. J. Heat Mass Trans., 137: 1290-300 (2019).
[21] Sheikholeslami M., Jafaryar M., Shafee A, Li Z., Haq R.U., Heat Transfer of Nanoparticles Employing Innovative Turbulator Considering Entropy Generation, Int. J. Heat Mass Trans., 136: 1233-40 (2019).
[22] Cattaneo C., Sulla Conduzione Del Calore, Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia, 3: 83-101 (1948).
[23] Christov C.I., Jordan P.M., Heat Conduction Paradox Involving Second-Sound Propagation in Moving Media, Phys. Rev. Lett., 94: 154301 (2005).
[24] Qi H., Guo X., Transient Fractional Heat Conduction with Generalized Cattaneo Model, Int. J. Heat Mass Trans., 76: 535-539 (2014).
[25] Compte A, Metzler R., The Generalized Cattaneo Equation for the Description of Anomalous Transport Processes, J. Phys. A, 30(21): 72-77 (1997).
[26] Straughan B., Thermal Convection with the Cattaneo-Christov Model, Int. J. Heat Mass Trans., 53: 95-98 (2010).
[27] Tibullo V., Zampoli V., A Uniqueness Result for the Cattaneo---Christov Heat Conduction Model Applied to Incompressible Fluids, Mech. Res. Commun., 38: 77-79 (2011).
[28] Haddad S.A.M, Thermal Instability in Brinkman Porous Media with Cattaneo--Christov Heat Flux, Int. J. Heat Mass Trans., 68: 659-668 (2014).
[29] Reddy J.N., “An Introduction to the Finite Element Method”, New York (1993).
[30] Sheikholeslami M, Seyednezhad M., Simulation of Nanofluid Flow and Natural Convection in a Porous Media Under the Influence of Electric Field Using CVFEM, Int. J. Heat Mass Trans., 120: 772-81 (2018).
[31] Sheikholeslami M., Ghasemi A., Solidification Heat Transfer of Nanofluid in Existence of Thermal Radiation by Means of FEM, Int. J. Heat Mass Trans, 123: 418-31 (2018).
[32] Sheikholeslami M, Finite Element Method for PCM Solidification in Existence of CuO NanoparticlesJ. Mol. Liq., 265: 347-55 (2018).
[33] Ashraf M.B., Hayat T., Alsaedi A., Three-Dimensional Flow of Eyring-Powell Nanofluid by Convectively Heated Exponentially Stretching Sheet, Eur.  Phys.  J.  Plus, 130: 5 (2015).
[34] Malik M.Y., Khan I., Hussain A., Salahuddin T., Mixed Convection Flow of MHD Eyring-Powell Nanofluid over a Stretching Sheet: A Numerical Study, AIP Adv., 5(11): 117-118 (2015).