Application of MEA, TEPA and Morpholine Grafted NaY Zeolite as CO2 Capture

Document Type : Research Article

Authors

1 Faculty of Chemistry, University of Mazandaran, Babolsar, I.R. IRAN

2 Faculty of Chemistry, Persian Gulf University, Bushehr, I.R. IRAN

Abstract

In the current research, NaY zeolite with a molar ratio of Si/Al=2.5 was grafted chemically with amines like monoethanolamine, tetraethylenepentamine, and morpholine.The modified NaY zeolites were characterized by XRD, FT-IR, TGA, EDAX, BET, FESEM, CO2-TPD, and Volumetric analysis. Modification of the NaY surface with amine groups led to a remarkable rise in CO adsorption capacity. CO2 adsorption studies of  NaY and modified NaY zeolite by CO2-TPD technique revealed that, the dominant mechanism involves the interaction of CO2 with amine groups on the surface of NaY zeolite, at ambient pressure and at a temperature of 323 K. The volumetric method was also used to investigate CO2 adsorption onto the amine grafted NaY zeolite at 5, 7 bar pressures and at temperatures of 298 and 343 K. The adsorption process is thermal dependence and results of adsorption studies indicate that increasing temperature leads to higher adsorption of CO2
onto the amine grafted NaY zeolites.

Keywords

Main Subjects


[1] Nicoletti G., Arcuri N., Nicoletti G., Bruno R., A Technical and Environmental Comparison Between Hydrogen and Some Fossil Fuels, Energy Conversion and Management, 89 205-213 (2015).
[4] Rackley S.A., "Carbon Capture and Storage", Butterworth-Heinemann, UK (2017).
[5] Wilk A., Więcław-Solny L., Tatarczuk A., Krótki A., Spietz T., Chwoła T., Solvent Selection for CO2  Capture from Gases with High Carbon Dioxide Concentration, Korean J. Chem. Eng, 34(8):2275-83 (2017).
[6] Więcław-Solny L., Ściążko M., Tatarczuk A., Kró tki A., Wilk A., Will CCS be Cheaper?–New CO2 Sorbents Wanted, Polityka Energy, 14:441 (2011).
[7] Stec M., Tatarczuk A., Więcław-Solny L., Krótki A., Spietz T., Wilk A., Śpiewak D., Demonstration of a Post-Combustion Carbon Capture Pilot Plant Using Amine-Based Solvents at the Łaziska Power Plant in Poland, Technol. Environ. Policy, 18(1): 151-60 (2016).
[8] Gielen D., CO2 Removal in the Iron and Steel Industry, Energy Conversion and Management44(7):1027-37 (2003).
[10] Bosoaga A., Masek O., Oakey J.E., CO2 Capture Technologies for Cement Industry, Energy Procedia, 1(1):133-40 (2009).
[11] Eriksson M., Hökfors B., Backman R., Oxyfuel Combustion in Rotary Kiln Lime Production, Energy Sci. Eng, 2(4):204-15 (2014).
[12] Last G.V., Schmick M.T., "Identification and Selection of Major Carbon Dioxide Stream Compositions, Richland, W.A., USA (2011).
[13] Liu F., Fang M., Dong W., Wang T., Xia Z., Wang Q., Luo, Z., Carbon Dioxide Absorption in Aqueous Alkanolamine Blends for Biphasic Solvents Screening and Evaluation, Applied Energy, 233:468-477 (2019).
[14] Ravanchi M. T., Sahebdelfar S., Carbon Dioxide Capture and Utilization in Petrochemical Industry: Potentials and Challenges, Applied Petrochemical Research, 4(1):63-77 (2014).
[15] Su F., Lu C., Cnen W., Bai H., Hwang J.F., Capture of CO2 from Flue Gas Via Multiwalled Carbon Nanotubes, Science of the Total Environment, 407(8): 3017-3023 (2009).
[16] Yue M.B., Sun L.B, Cao Y., Wang Y., Wang Z.J., Zhu J.H., Efficient CO2 Capturer Derived from As‐Synthesized MCM‐41 Modified with Amine, Chemistry-A European Journal, 14(11): 3442-51 (2008).
[17] Demessence A., D’Alessandro D.M., Foo M.L., Long J.R., Strong CO2 Binding in a Water-Stable, Triazolate-Bridged Metal-Organic Framework Functionalized with Ethylenediamine, Journal of the American Chemical Society, 131(25):8784-6 (2009).
[18] Wang K., Shang H., Li L., Yan X., Yan Z., Liu C., Zha Q., Efficient CO2 Capture on Low-Cost Silica Gel Modified by Polyethyleneimine, Journal of Natural Gas Chemistry, 21(3): 319-23 (2012).
[19] Tan L.S., Lau K.K., Bustam M.A., Shariff A.M., Removal of High Concentration CO2 from Natural Gas at Elevated Pressure Via Absorption Process in Packed Column, Journal of Natural Gas Chemistry, 21(1):7-10 (2012).
[21] Alcañiz-Monge J., Marco-Lozar J.P., Lillo-Ródenas M.Á., CO2 Separation by Carbon Molecular Sieve Monoliths Prepared from Nitrated Coal Tar Pitch, Fuel Processing Technology, 92(5):915-919 (2011).
[23] Saeidi M., Ghaemi A., Tahvildari K., CO2 Capture Exploration on Potassium Hydroxide Employing Response Surface Methodology, Isotherm and Kinetic Models, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 39(5): 255-267 (2020).
[24] Karbalaei M.N., Ghaemi A., Tahvildari K., Mehrdad S.A.A., Experimental Investigation and Modeling of CO2 Adsorption Using Modified Activated Carbon, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 39(1): 177-192 (2020)..
 [25] Hsu S.C., Lu C., Su F., Zeng W., Chen W., Thermodynamics and Regeneration Studies of CO2 Adsorption On Multiwalled Carbon Nanotubes, Chemical Engineering Science, 65(4): 1354-1361 (2010).
[26] Noorpoor A., Nazari Kudahi S., Mahmoodi N. M., Adsorption Performance Indicator for Power Plant CO2 Capture on Graphene Oxide/TiO2 Nanocomposite, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 38(3): 293-307 (2019).
[27] Shao L., Li Y., Huang J., Liu Y.N., Synthesis of Triazine-Based Porous Organic Polymers Derived N-Enriched Porous Carbons for CO2 Capture, Industrial & Engineering Chemistry Research, 57(8):2856-65 (2018).
[28] Gray M.L., Hoffman J.S., Hreha D.C., Fauth D.J., Hedges S.W., Champagne K.J., Pennline H.W., Parametric Study of Solid Amine Sorbents for the Capture of Carbon Dioxide, Energy & Fuels, 23(10): 4840-4844 (2009).
[29] Arstad B., Fjellvåg H., Kongshaug K.O., Swang O., Blom R., Amine Functionalised Metal Organic Frameworks (MOFs) As Adsorbents For Carbon Dioxide, Adsorption, 14(6):755-62 (2008).
[30] Furukawa H., Ko N., Go Y.B., Aratani N., Choi S.B., Choi E., Yazaydin A.Ö., Snurr R.Q., O’Keeffe M., Kim J., Yaghi O.M., Ultrahigh Porosity in Metal-Organic Frameworks, Science, 329(5990): 424-428 (2010).
[31] Yazaydın A.O., Snurr R.Q., Park T.H., Koh K., Liu J., LeVan M.D., Benin A.I., Jakubczak P., Lanuza M., Galloway D.B., Low J.J., Screening of Metal− Organic Frameworks for Carbon Dioxide Capture From Flue Gas Using a Combined Experimental and Modeling Approach, Journal of the American Chemical Society, 131(51):18198-18199 (2009).
[32] Yazaydın A.O., Benin A.I., Faheem S.A., Jakubczak P., Low J.J., Willis R.R., Snurr R.Q., Enhanced CO2 Adsorption in Metal-Organic Frameworks via Occupation of Open-Metal Sites by Coordinated Water Molecules, Chemistry of Materials, 21(8):1425-30(2009).
[33] Modak A,. Jana S., Advancement in Porous Adsorbents for Post-Combustion CO2 Capture, Microporous and Mesoporous Materials, (2018). 
[34] Pham T.D., Hudson M.R., Brown C.M., Lobo R.F., On the Structure–Property Relationships of Cation‐Exchanged ZK‐5 Zeolites for CO2 Adsorption, Chem. Sus. Chem., 10(5): 946-957 (2017).
[35] Yu C.H., Huang C.H., Tan C.S., A Review of CO2 Capture by Absorption and Adsorption, Aerosol Air Qual. Res, 12(5): 745-769 ‏(2012).
 [36] Lee Y.R., Hong S.H., Ahn W.S., Extrapolation of the Clausius-Clapeyron Plot for Estimating the CO2 Adsorption Capacities of Zeolites at Moderate Temperature Conditions, Korean Journal of Chemical Engineering, 34(1): 37-40 (2017).
[37] Wei J., Lin Z., He Z., Geng L., Liao L., Bagasse Activated Carbon with TETA/TEPA Modification and Adsorption Properties of CO2, Water, Air, & Soil Pollution, 228(4):128 (2017).
[39] Panda D., Singh S.K., Kumar E.A., A Comparative Study of CO2 Capture by Amine Grafted vs Amine Impregnated Zeolite 4AMaterials Science and Engineering, 377(1): 012148 (2018).
[40] Choi S., Drese J. H., Jones C.W., Adsorbent Materials for Carbon Dioxide Capture from Large Anthropogenic Point Sources, Chem. Sus. Chem.: Chemistry & Sustainability Energy & Materials, 2(9):796-854 (2009).
[42] Ma R.J., Xu Y.Q., Liu Y.M., Zhao R.H., Zhang X.J., Li J., Liu Y., Synthesis of NaY Zeolite and Their CO2 Adsorption Properties, In Advanced Materials Research, 1033: 399-403 (2014).
[43] Niknam K., Deris A., Naeimi F., Majleci F., Synthesis of 1, 2, 4, 5-tetrasubstituted Imidazoles Using Silica-Bonded Propylpiperazine N-sulfamic Acid as a Recyclable Solid Acid Catalyst, Tetrahedron Letters, 52(36):4642-5 (2011).
[44] Montes-Luna A.D., Fuentes-Lopez N.C., Castruita-de-Leon G., Perez-Camacho O., Garcia Rodriguez S.P., Perera-Mercado Y.A., Modification of Zeolite Nay And Preparation of Hybrid Membranes for the Separation of  Mixed Gases, Revista Mexicana de Ingenieria Quimica, 18(1): 325-37 (2019).
[45] Gawande S.M., Belwalkar N.S., Mane A.A., Adsorption and its Isotherm–Theory, International Journal of Engineering Research, 6(6): 312-316 (2017).
[46] Yu Y., Mai J., Wang L., Li X., Jiang Z., Wang F., Ship-in-a-bottle Synthesis of Amine-Functionalized Ionic Liquids in NaY Zeolite for CO2 Capture, Scientific Reports, 4: 5997-    (2014).
[47] Bezerra D. P., da Silva F. W., de Moura P. A., Sousa A.G., Vieira R.S., Rodriguez-Castellon E., Azevedo D. C., CO2 Adsorption in Amine-Grafted Zeolite 13X, Applied Surface Science, 314:314-321 (2014).
[48] Su F., Lu C., Kuo SC., Zeng W., Adsorption of CO2 on Amine-Functionalized Y-Type Zeolites, Energy & Fuels, 24(2):1441-8 (2010).
[49] Zhou J., Li W., Zhang Z., Xing W., Zhuo S., Carbon Dioxide Adsorption Performance of N-doped Zeolite Y Templated Carbons, RSC Advances, 2(1):161-167 (2012).
[50] Maroto-Valer M., Lu Z., Zhang Y., Tang Z., Sorbents for CO2 Capture from High Carbon Fly Ashes, Waste Management, 28(11): 2320-2328 (2008).‏
[51] Banaei M., Anbia M., Kazemipour M., Enhancement of CO2/CH4 Adsorptive Selectivity by Functionalized Faujasite Zeolite, Journal of Ultrafine Grained and Nanostructured Materials, 51(2):174-182 (2018).‏
[52] Dindi A., Quang D.V., Vega L.F., Nashef E., Abu-Zahra M.R., Applications of Fly Ash for CO2 Capture, Utilization, and Storage, Journal of CO2 Utilization, 29:82-102 (2019).
[53] Heo Y.J., Zhang Y., Rhee K.Y., Park S.J., Synthesis of PAN/PVDF nanofiber Composites-Based Carbon Adsorbents for CO2 Capture, Composites Part B: Engineering, 156: 95-99 (2019).
[54] Boujibar O., Souikny A., Ghamouss F., Achak O., Dahbi M., Chafik T., CO2 Capture Using N-containing Nanoporous Activated Carbon Obtained from Argan Fruit Shells, Journal of Environmental Chemical Engineering, 6(2):1995-2002 (2018).
[55] Hauchhum L., Mahanta P., Carbon Dioxide Adsorption on Zeolites and Activated Carbon by Pressure Swing Adsorption in a Fixed Bed, International Journal of Energy and Environmental Engineering, 5(4):349-356 ‏(2014).
[56] Lee S. C., Hsieh C. C., Chen, C. H., Chen Y.S., CO2 Adsorption by Y-Type Zeolite Impregnated with Amines in Indoor Air, Aerosol and Air Quality Research, 13:360–366 (2013).
[57] Babaei M., Anbia M., Kazemipour M., Improving CO2 Adsorption With New Amine-Functionalized Y-Type Zeolite, Journal of Advances in Environmental Health Research, 5(2):70-77 (2017).
[58] Rad M.D., Fatemi S., Mirfendereski, S.M., Development of T Type Zeolite for Separation of CO2 from CH4 in Adsorption Processes, Chemical Engineering Research and Design, 90(10): 1687-1695 (2012).