Experimental and Computational Studies on the Electrochemical Behavior of Carvacrol and Menthol

Document Type : Research Article


1 Department of Chemistry, Faculty of Science, Ahar Branch, Islamic Azad University, Ahar, I.R. IRAN

2 Department of Chemistry, Ayatollah Borujerdi University, Borujerd, I.R. IRAN


In this study, the effects of solvent on the electrode potentials of menthol and carvacrol species were investigated experimentally and computationally and their antioxidant properties were compared in different solvents by calculating the half-wave potential E1/2 of species, Vand Dissociative Energy (BDE), Ionization Energy (IE), and Electron Affinity (EA). Electrochemical behavior of menthol and carvacrol species in four solvents (MeOH, EtOH, DMSO, and Heptane) were studied using cyclovoltametric technique in a glass electrode as a working electrode and the calculations for obtaining the electrode potential were performed using DFT functional including B3LYP with 6-311+G(d,p)basis set and PCM and IEFPCM models for calculation of solvent energy. Finally, the results were compared and confirmed by experimental methods. Where in the compound carvacrol represent more properties antioxidant than menthol due to lower values E1/2 in gas and solution phases. Also, the lower BDE in the gas phase is 80.19 kcal/mol compared with menthol (98.91 kcal/mol). Moreover, compound carvacrol has the IE value of 1.12 eV smaller than menthol and has the EA value of 0.35 eV higher than menthol. Calculations show that the model had no effect on computational results. Also, according to the results, the antioxidant properties of carvacrol in non-polar solvents were higher due to the smaller amount of E1/2.


Main Subjects

[1] Singhal P., Singla N., Sakhare D., Sharma, K.A., A Comparative Evaluation of in Vitro Antioxidant Activity of Some Commonly Used Spices of Northern India, Nat. Prod. J, 7(2):131–136 (2017).
[2] Ene-Obong H., Onuoha N., Aburime L., Mbah O., Chemical composition and Antioxidant Activities of Some Indigenous Spices Consumed in Nigeria, Food Chem, 238: 58-64 (2018).
[3] Guiné R.P.F., Gonçalves C., Matos S., Gonçalves F., Costa D.V.T.A., Mendes M., Modeling Through Artificial Neural Networks of the Phenolic Compounds and Antioxidant Activity of Blueberries, Iran. J. Chem. Chem. Eng. (IJCCE),37(2): 193-212 (2018).
[4]  Zubair  M.,   Anwar F.,  Zafar M.N.,  Nazar M.F., Ijaz Hussain A., Mughal E.U.,  Effect of Ultrasonic Extraction Regimes on Phenolics and Antioxidant Attributes of Rice (oryza sativa L.) Cultivars,
Iran. J. Chem. Chem. Eng. (IJCCE)., 37(1): 109-119 (2018).
[5] Lima Mda S.L., Quintans-Júnior, L.J., de Santana W.A.,  Martins Kaneto C., Pereira Soares M.B., Villarreal C.F., Anti-inflammatory Effects of Carvacrol: Evidence for a Key Role of Interleukin-10, Eur. J. Pharmacol., 699(1-3):112-117 (2013).
[7]Vladić J., Zeković Z., Jokić S., Svilović  S., Kovačević S., Vidović S., Winter Savory: Supercritical Carbon Dioxide Extraction and Mathematical Modeling of Extraction Process, J. Supercrit. Fluids, 117: 89-97 (2016).
[11] Karaaslan C., Kadri H., Coban T., Suzen S., Westwell A.D., Synthesis and Antioxidant Properties of Substituted 2-phenyl-1H-indoles, Bioorg. Med. Chem. Lett., 23(9):2671-2674 (2013).
[12]  Lobo V.,  Patil A., Phatak A., Chandra N., Free Radicals, Antioxidants and Functional Foods: Impact on Human Health, Pharmacogn Rev, 4(8): 118–126 (2010).
[14] Ghalkhani M., Salehi M., Beheshtian J., DFT Studies of Functionalized Carbon Nanotubes as Nanoadsorbent of a Benzimidazole Fungicide Compound, J. Math. Nanosci, 8(1): 13–18 (2018).
[15] Javanshir Z., Jameh-Bozorghi S., Namdari A., Ab Initio and DFT Study of Prototropic and  Metallotropic 1, 5-Shifts of Isolobal Cyclopentadienyl Derivatives,  Curr. Sci, 112(4): 743-749 (2017).
 [16] Yang H., Ma X., Xiong H., Gao J., Gao X.,  Li Y., ZhangQ., The Electrochemical Redox Mechanism and Antioxidant Activity of Oleanolic Acid Based on Multi-walled Carbon Nanotube Screen-Printin, Int, J. Electrochem. Sci, 12: 770-781 (2017).
[17] Yaghoubian H., Jahani S., Beitollahi H.,  Tajik S., Hosseinzadeh R., Biparva P., Voltammetric Determination of Droxidopa in the Presence of Tryptophan Using a Nanostructured Base Electrochemical Sensor, J. Electrochem. Sci. Technol, 9(2):109-117 (2018).
[18] Fekri M.H., Khanmohammadi H., Darvishpour M., An Electrochemical Cr (III)-selective Sensor-Based on a Newly Synthesized Ligand and Optimization of Electrode with a Nano Particle, Int. J. Electrochem. Sci, 6: 1679-1685 (2011).
[19] Jameh-Bozorghi S., Darvishpour M., Mostghiman  S., Javanshir Z., Solvent Effect on the Redox Potentials of Tetraethyl Ammonium Hexacyanomanganate (III): A Computational Study, Int. J. Electrochem. Sci, 6: 4891-4899 (2011).
[22] Savéant J. M., Molecular Catalysis of Electrochemical Reactions. Mechanistic Aspects, Chem. Rev. 108: 2348–2378 (2008).
[23] Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R.,  Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T.,  Montgomery J.A.,  Peralta  J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K.,  Rendell A., Burant  J.C., Iyengar S.S., Tomasi  J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., CammiR, Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels AD., Farkas O., Foresman J.B., Ortiz J.V., Cioslowski J., Fox DJ., "Gaussian, Inc" Wallingford CT, (2009).
[24] Mennucci B., Tomasi J., Cammi R., Cheeseman J.R., Frisch M.J., Devlin F.J., Gabriel S., Stephens P.J., Polarizable Continuum Model (PCM) Calculations of Solvent Effects on Optical Rotations of Chiral Molecules, J. Phys. Chem. A, 106: 6102–6113 (2002).
[26] Barone V., Cossi M., Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model, J. Phys. Chem. A, 102: 1995–2001 (1998).
[27] Ghaempanah A., Darvishpour M., Fekri M.H., Electrochemical Calculations of Some Non-Steroidal Anti-Inflammatory Drugs: Solvent Effect and Antioxidant Activity, Int. J. Electrochem. Sci 7: 6127-6133 (2012).
[32] Klamt A., Jonas V., Burger T., Lohrenz J.C.W., Refinement and Parametrization of COSMO-RS, J. Phys. Chem. A, 102: 5074–5085 (1998).
[33] Edinger S.R., Cortis C., Shenkin P.S., Friesner R.A., Solvation free energies of peptides: Comparison of Approximate Continuum Solvation Models with Accurate Solution of the Poisson–Boltzmann Equation, J. Phys. Chem. B, 101: 1190–1197 (1997).
[34] Friedrichs M., Zhou R., Edinger S.R., Friesner R.A., Poisson–Boltzmann Analytical Gradients for Molecular Modeling Calculations, J. Phys. Chem. B, 103: 3057–3061 (1999).
[35] Marten B., Kim K., Cortis C., Friesner R.A., Murphy R.B., Ringnalda M.N., Sitkoff D., Honig B., New Model for Calculation of Solvation Free Energies: Correction of Self-Consistent Reaction Field Continuum Dielectric Theory for Short-Range Hydrogen-Bonding Effects, J. Phys. Chem, 100: 11775–11788 (1996).
[37] Leopoldini M., Russo N., Toscano M., The Molecular Basis of Working Mechanism of Natural Polyphenolic Antioxidants, Food Chemistry, 125: 288-306 (2011).
[38] Thong N. M., Quang D. T., Bui N. H. T., Dao D. Q., Nam P. C., Antioxidant Properties of Xanthones Extracted from the Pericarp of Garcinia Mangostana (Mangosteen): A Theoretical Study, Chem. Phys. Lett,  625: 30-35 (2015).
[41] Martinez  S., Valak L., Resetic J., FrenecRuzic D., Cyclic Voltammetry Study of Plasma Antioxidant Capacity Comparison with the DPPH and TAS Spectrophotometric Methods,J Electroanal Chem., 588(1): 68-73 (2006).
[42] Yakovleva K.E., Kurzeev S.A., Stepanova E.V., Fedorava T.V., Kuznetsov B.A., Koroelva O.V., Characterization of Plant Phenolic Compounds by Cyclic Voltammetry, Appl. Biochem. Microbiol, 43(6): 661-668 (2007).
[43] Bhuvaneshwari D.S., Elango, K.P.,  Solvent and Substituent Effects on the Electrochemical Oxidation of Para‐ and Meta‐Substituted Anilines, Int J Chem Kinet, 39(5): 289-297 (2007).
[44] Blasco A.J., Rogerio M.C., Gonzalez M.C., Escarpa A., Electrochemical Index as a Screening Method to Determine Total Polyphenolics in Foods: A Proposal, Anal Chim Acta, 539: 237-244 (2005).
[45] Jameh-Bozorghi S., Darvishpour M., Mohhammadi S., Javanshir  Z., Predictions of Solvent Effects on Ionization Constants of Two Sulfonic Acids, Int. J. Electrochem. Sci, 6: 5031-5037 (2011).
[47] Murallidharan B., Gopu G.,  Vedhi C., Manisankar P.,Voltammetric Determination of Analgesics Using a Montmorillonite Modified Electrode, Appl. Clay Sci., 42: 206-213 (2008).
[48] Adhoum N., Monser L., Toumi M., Boujlel K., Determination of Naproxen in Pharmaceuticals by Differential Pulse Voltammetry at a Platinum Electrode, Anal. Chim. Acta,  495: 69-75 (2003).
[49] Tsopelas F., Ochsenkühn-Petropoulou M., Zikos N., Spyropoulou E., Andreadou I., Tsantili-Kakoulidou A., Electrochemical Study of Some Non-steroidal Anti-inflammatory Drugs: Solvent Effect and Antioxidant Activity, J Solid State Electrochem., 15: 1099–1108 (2011).
[50] Galano A., Mazzone G., Alvarez-Diduk R., Marino T., Alvarez-Idaboy T.R., Russo N., Food Antioxidants: Chemical Insights at the Molecular Level, Ann. Rev. Food Sci. Tech., 7: 335–52(2016).
[52] Namazian M., Almodarresieh H.A., Noorbala M.R., Zare H.R., DFT Calculation of Electrode Potentials for Substituted Quinones in Aqueous Solution, Chem. Phys. Lett, 396: 424–428(2004).
[53] Blinco J.P., Hodgson J.L., Morrow B.J., Walker J.R., Will G.D., Coote M.L., Bottle S.E., Experimental and Theoretical Studies of the Redox Potentials of Cyclic Nitroxides, J. Org. Chem, 73: 6763–6771(2008).
[56] Guerar  J.J., Arey J.S., Critical evaluation of Implicit Solvent Models for Predicting Aqueous Oxidation Potentials of Neutral Organic Compounds, J. Chem. Theory Comput,  9: 5046–5058(2013).
[57] Li X. L., Fu Y., Theoretical Study of Reduction Potentials of Substituted Flavins, J. Mol. Struct. Theochem, 856: 112–118 (2008).
[58] North M.A., Bhattacharyya S., Truhlar D.G., Improved Density Functional Description of the Electrochemistry and Structure-Property Descriptors of Substituted Flavins, J. Phys. Chem. B,  114: 14907–14915(2010).