Preparation, Characterization, and Performance Study of PVDF Nanocomposite Contained Hybrid Nanostructure TiO2-POM Used as a Photocatalytic Membrane

Document Type : Research Article

Authors

Department of Chemistry, University of Guilan, Rasht, I.R. IRAN

Abstract

In this work, polyvinylidene fluoride membranes were modified by introducing nanostructure TiO2/SiO2/POM hybrid fibers in the polymeric dope, to endow them with photocatalytic properties. For this purpose, initially, hybrid fibers were synthesized by electrospinning and calcination technique, and then these additives were incorporated into the membrane matrix. FT-IR and XRD analysis were used for the characterization of synthesized compounds. The FESEM manifests that the average diameter of the hybrid composite fibers is about 500 nm, and investigated membrane morphology. The properties of the prepared photocatalytic membrane were examined by several investigations such as pure water flux, contact angle, salt, and heavy metal rejection. Photocatalytic experiments confirm that membranes display a highly efficient and durable activity for the photodegradation of Methylene Bue (MB) and Humic Acid (HA). Experiments show that the prepared membranes have excellent stability under UV irradiation and can be used potentially for the separation of different components from water. The measurement accuracy and repeatability were determined by calculating the Standard Deviation and entered into Tables.

Keywords

Main Subjects


[1] Kobielska P.A., Howarth A.J., Farha O.K., Nayak S., Metal-Organic Frameworks for Heavy Metal Removal from Water, Coordination Chemistry Reviews 358: 92-107 (2018).
[2] Lu F., Astruc D., Nanomaterials for Removal of Toxic Elements from Water, Coordination Chemistry Reviews 356: 147-164 (2018).
[3] Natarajan S., Bajaj H.C., Tayade R.J., Recent Advances Based on the Synergetic Effect of Adsorption for Removal of Dyes from Waste Water Using Photocatalytic Process, Journal of Environmental Sciences 65: 201-222 (2018).
[4] Changming D., Chao S., Gong X., Ting W., Xiange W., Plasma Methods for Metals Recovery from Metal–Containing Waste, Waste Management 77: 373-387 (2018).
[6] Taseidifar M., Makavipour F., Pashley R.M., Rahman A.F.M.M., Removal of Heavy Metal Ions from  Water Using Ion Flotation, Environmental Technology & Innovation 8: 182-190 (2017).
[8] Belletire J.L., Mahmoodi N.O., Efficient Microscale Filtration, Journal of Chemical Education, 964 (1989) 11.
[9] Lian J.-Z., Tsai C.-T., Chang S.-H., Lin N.-H., Hsieh Y.-H., Iron Waste as an Effective Depend on TiO2 for Photocatalytic Degradation of Dye Waste Water, Optik - International Journal for Light and Electron Optics 140: 197-204 (2017).
[10] Zatloukalová K., Obalová L., Kočí  K., Čapek L., Matěj Z., Šnajdhaufová H., Ryczkowski J., Słowik G., Photocatalytic Degradation of Endocrine Disruptor Compounds in Water over Immobilized TiO Photocatalysts, Iran. J. Chem. Chem. Eng. (IJCCE), 36(2): 20-38 (2017).
[11] Chakraborty S., Loutatidou S., Palmisano G., Kujawa J., Mavukkandy M.O., Al-Gharabli S., Curcio E., Arafat H.A., Photocatalytic Hollow Fiber Membranes for the Degradation of Pharmaceutical Compounds in Wastewater, Journal of Environmental Chemical Engineering 5: 5014-5024 (2017).
[12] Teow Y.H., Ooi B.S., Ahmad A.L., Study on PVDF-TiO2 Mixed-Matrix Membrane Behaviour Towards Humic Acid Adsorption, Journal of Water Process Engineering 15: 99-106 (2017).
[13] Zhao Ma Y., L., Chang W., Huang Z., Feng X., Qi X., Li Z., Efficient Photocatalytic Degradation of Gaseous N,N-dimethylformamide in Tannery Waste Gas Using Doubly Open-Ended Ag/TiO2 Nanotube Array Membranes, Applied Surface Science 444: 610-620 (2018).
[14] Nair A.K., JagadeeshBabu P.E., Ag-TiO2 Nanosheet Embedded Photocatalytic Membrane For Solar Water Treatment, Journal of Environmental Chemical Engineering 5: 4128-4133 (2017).
[16] Zayadi R.A., Bakar F.A., Comparative Study on the Performance of Au/F-TiO2 Photocatalyst Synthesized from Zamzam Water and Distilled Water under Blue Light Irradiation, Journal of Photochemistry and Photobiology A: Chemistry 346: 338-350
(2017).
[17] Shi H., Yu Y., Zhang Y., Feng X., Zhao X., Tan H., Khan S.U., Li Y., Wang E., Polyoxometalate/TiO2/Ag Composite Nanofibers with Enhanced Photocatalytic Performance under Visible Light, Applied Catalysis B: Environmental 221: 280-289 (2018).
[18] Li Y., Zhou J., Fan Y., Ye Y., Tang B., Preparation of Environment-Friendly 3D Eggshell Membrane-Supported Anatase TiO2 as a Reusable Photocatalyst for Degradation of Organic Dyes, Chemical Physics Letters 689: 142-147 (2017).
[19] Li S., Zhang L., Zhao C., Yu Y., Zhang Z., Li L., A New Polyoxometalate-Based Helical Compound with Entanglement Nodes: Structure, Electrocatalytic and Photocatalytic Properties, Journal of Molecular Structure 1145: 76-80 (2017).
[20] Zhang L., Mi T., Ziaee M.A., Liang L., Wang R., Hollow [email protected] Hybrid-Derived Porous Co3O4/CoMoO4 Nanocages for Enhanced Electrocatalytic Water Oxidation, Journal of Materials Chemistry A 6: 1639-1647 (2018).
[21] Yu L., Ding Y., Zheng M., Polyoxometalate-Based Manganese Clusters as Catalysts for Efficient Photocatalytic and Electrochemical Water Oxidation, Applied Catalysis B: Environmental 209: 45-52 (2017).
[22] Fallah Shojaei A., Loghmani M.H., Effect of Microwave Irradiation on Morphology and Size of Anatase Nano Powder: Efficient Photodegradation of 4-Nitrophenol by W-doped Titania, Bulletin of the Korean Chemical Society, 33: 3981-3986 (2012).
[23] Tan W., Luo L., Zheng Y., Jegatheesan V., Shu L., Zhang S., Yang M., Wang H., Preparation and Photocatalytic Activity of Heteropolyacid Salt (POM)/TiO2 Composites Synthesized by Solid Phase Combustion Method, Process Safety and Environmental Protection 104: 558-563 (2016).
[26] Subramaniam M.N., Goh P.S., Lau W.J., Ng B.C., Ismail A.F., AT-POME Colour Removal Through Photocatalytic Submerged Filtration Using Antifouling PVDF-TNT Nanocomposite Membrane, Separation and Purification Technology 191: 266-275 (2018).
[27] Dehghan Niri A., Faridi-Majidi R., Saber R.,  Khosravani M.,  Adabi M., Electrospun Carbon Nanofiber-Based Electrochemical Biosensor for the Detection of Hepatitis B Virus, Biointerface Research in Applied Chemistry, 9(4): 4022-4026 (2019).
[28] Sobhanipour M.A., Karimikan R ., Khodabakhshi M., Nitrate Removal from Water Using TiO2/ PVDF Membrane PhotobioreactorIran. J. Chem. Chem. Eng. (IJCCE), 40(1):167-183 (2019).
[29] Xu H., Ding M., Chen W., Li Y., Wang K., Nitrogen-Doped GO/TiO2 Nanocomposite Ultrafiltration Membranes for Improved Photocatalytic Performance, Separation and Purification Technology 195: 70-82 (2018).
[31] Xing Z., Zhang J., Cui J., Yin J., Zhao T., Kuang J., Xiu Z., Wan N., Zhou W., Recent Advances in Floating TiO2-Based Photocatalysts for Environmental Application, Applied Catalysis B: Environmental 225: 452-467 (2018).
[32] Taghavi M., Tabatabaee M., Ehrampoush M.H., Ghaneian M.T., Afsharnia M., Alami A., Mardaneh J., Synthesis, Characterization and Photocatalytic Activity of TiO2/ZnO-Supported Phosphomolybdic Acid Nanocomposites, Journal of Molecular Liquids 249: 546-553 (2018).
[34] Choksumlitpol P., Mangkornkarn C., Sumtong P., Onlaor K., Eiad-ua A., Fabrication of Anodic Titanium Oxide (ATO) for Waste Water treatment Application, Materials Today: Proceedings 4: 6124-6128 (2017).
[35] Delsouz Khaki M.R., Shafeeyan M.S., Raman A.A.A., Daud W.M.A.W., Evaluating the Efficiency of Nano-Sized Cu Doped TiO2/ZnO Photocatalyst Under Visible Light Irradiation, Journal of Molecular Liquids 258: 354-365 (2018).
[36] Lavorato C., Argurio P., Mastropietro T.F., Pirri G., Poerio T., Molinari R., Pd/TiO2 Doped Faujasite Photocatalysts for Acetophenone Transfer Hydrogenation in a Photocatalytic Membrane Reactor, Journal of Catalysis 353: 152-161 (2017).
[37] Karaolia P., Michael-Kordatou I., Hapeshi E., Drosou C., Bertakis Y., Christofilos D., Armatas G.S., Sygellou L., Schwartz T., Xekoukoulotakis N.P., Fatta-Kassinos D., Removal of Antibiotics, Antibiotic-Resistant Bacteria and Their Associated Genes by Graphene-Based TiO2 Composite Photocatalysts under Solar Radiation in urban Wastewaters, Applied Catalysis B: Environmental 224: 810-824 (2018).
[38] Wu C-H, Chern J-M., Kinetics of Photocatalytic Decomposition of Methylene Blue, Ind. Eng. Chem. Res.  45: 6450-6457 (2006).
[39] Avramidou K.V., Zaccheria F., Karakoulia S.A., Triantafyllidis K.S., Ravasio N., Esterification of Free Fatty Acids Using Acidic Metal Oxides and Supported Polyoxometalate (POM) Catalysts, Molecular Catalysis 439: 60-71 (2017).
[40] Dzinun H., Othman M.H.D., Ismail A.F., Puteh M.H., Rahman M.A., Jaafar J., Stability Study of PVDF/TiO2 dual-layer hollow Fiber Membranes under Long-Term UV Irradiation Exposure, Journal of Water Process Engineering 15: 78-82 (2017).
[41] Dui X.-J., Wu X.-Y., Liao J.-Z., Teng T., Wu W.-M., Yang W.-B., Photocatalytic Properties of Two POM-Templated Organic-Inorganic Hybrid Compounds, Inorganic Chemistry Communications 56: 112-115 (2015).
[42] Rahimpour A., Jahanshahi M., Mollahosseini A., Rajaeian B., Structural and Performance Properties of UV-Assisted TiO2 Deposited Nano-Composite PVDF/SPES Membranes, Desalination 285: 31-38 (2012).
[43] Simone S., Galiano F., Faccini M., Boerrigter M. E., Chaumette C., Drioli E., Figoli A., Preparation and Characterization of Polymeric-Hybrid PES/TiO2 Hollow Fiber Membranes for Potential Applications in Water Treatment, Fibers, 5: 14-33 (2017); doi:10.3390/fib5020014