Removal of Maxilon Red Dye by Adsorption and Photocatalysis: Optimum Conditions, Equilibrium, and Kinetic Studies

Document Type : Research Article


1 Laboratory of Materials Technology, Faculty of Mechanic and Engineering Process (USTHB), B.P. 32, El-Alia, Bab-Ezzouar, Algiers, ALGERIA

2 Laboratory of Storage and Valorization of Renewable Energies, Faculty of Chemistry (USTHB), B.P. 32, Algiers, ALGERIA


The present work has for the main objective the elimination of the textile dye Maxilon Red (MR) by coupling two processes, adsorption on activated clay followed by photocatalysis over the wurtzite ZnO. The influence of the physical parameters like the initial pH, adsorbent dose of the activated clay, MR concentration, and temperature have been studied. The best adsorption yield occurs at neutral pH ~ 7 within 60 min with an adsorption percentage of 97% for MR concentration of 25 mg/L and an adsorbent dose of 0.5 g/L. The data were suitably fitted by the Langmuir model with a maximum adsorption capacity of 175 mg/g. To investigate the adsorption mechanism, the adsorption constants were determined from the pseudo-first-order, pseudo-second-order, and intraparticle diffusion models. It was found that the MR adsorption is well described by the pseudo-second-order kinetic. The thermodynamic parameters ΔH˚ = -17.138 kJ/mol, ΔS˚ = 32.84 J/mol.K, and ΔG˚=−6.419 to−7.329 kJ/mol with rising temperature from 25 to 50˚C indicated that the adsorption is exothermic and spontaneous. The second part of this work was devoted to the photocatalytic degradation onto ZnO under solar irradiation of the residual MR concentration, which remained after adsorption. In this respect, the effect of ZnO dose and MR concentration has also been investigated. The photodegradation rate reached 99% under irradiation within 90 minutes under the optimum conditions. The parametric study showed that the elimination is very effective by photocatalysis, based essentially on the in situ generations of free radicals OH which are non-selective and very reactive. The present study shows that the activated clay is an effective low-cost adsorbent for the removal of Maxilon red from an aqueous solution.


Main Subjects

[1] Khemila B., Merzouk B., Chouder A., Zidelkhir R., Leclerc J. P., Lapicque F., Removal of a Textile Dye Using Photovoltaic Electrocoagulation, Sustain. Chem. Pharm., 7: 27-35 (2018).
[2] Abidi N., Duplay J., Jada A., Errais E., Ghazi M., Semhi K., Trabelsi-Ayadi M., Removal of Anionic Dye from Textile Industries' Effluents by Using Tunisian Clays as Adsorbents. Ζeta Potential and Streaming-Induced Potential Measurements, C. R. Chimie., 22: 113-125 (2018).
[3] Ventura-Camargo B.C., Marin-Morales M.A., Azo Dyes: Characterization and Toxicity A Review, Text. Light Ind. Sci. Technol., 2: 85-103 (2013).
[4] Chaari I.,  Fakhfakh E., Medhioub M., Jamoussi F., Comparative Study on Adsorption of Cationic and Anionic Dyes by Smectite Rich Natural Clays,  J. Mol. Struct1179: 672-677 (2019).
[5] Mittal H., Alhassan S. M., Ray, S. S., Efficient Organic Dye Removal from Wastewater by Magnetic Carbonaceous Adsorbent Prepared from Corn Starch, J. Environ. Chem. Eng., 6(6): 7119-7131 (2018).
[7] Dogan M., Karaoglu M. H., Mahir Alkana., Adsorption Kinetics of Maxilon Yellow 4GL and Maxilon Red GRL Dyes on Kaolinite, J. Hazard. Mater, 165:1142–1151 (2009).
[8] Mehrabi, F., Vafaei, A., Ghaedi, M., Ghaedi, A. M., Dil, E. A., Asfaram, A., Ultrasound Assisted Extraction Of Maxilon Red GRL Dye from Water Samples Using Cobalt Ferrite Nanoparticles Loaded on Activated Carbon as Sorbent: Optimization and Modeling, Ultrason. Sonochem., 38:672-680 (2017).
[9] Doğan, M., Karaoğlu, M. H., Alkan, M., Adsorption Kinetics of Maxilon Yellow 4GL and Maxilon Red GRL Dyes on KaoliniteJ. Hazard. Mater., 165(1-3): 1142-1151 (2009).
[10] Basibuyuk M., Forster C. F., An Examination of the Adsorption Characteristics of a Basic Dye (Maxilon Red BL-N) on to Live Activated Sludge System, Process Biochem., 38(9): 1311-1316 (2003).
[11] Katheresan V., Kansedo J., Lau S. Y., Efficiency of Various Recent Wastewater Dye Removal Methods: A Review, J. Environ. Chem. Eng., 6: 4676-4697 (2018).
[12] Sharma A., Syed Z., Brighu U., Gupta A. B., Ram, C., Adsorption of Textile Wastewater on Alkali-Activated Sand, J. Clean. Prod., 220: 23-32 (2019).
[13] Liang J., Ning X. A., Sun J., Song J., Hong Y., Cai, H., An integrated Permanganate and Ozone Process for the Treatment of Textile Dyeing Wastewater: Efficiency and MechanismJ. Clean. Prod., 204: 12-19 (2018).
[14] Özcan A., Öncü E. M., Özcan A. S., Kinetics, Isotherm and Thermodynamic Studies of Adsorption of Acid Blue 193 from Aqueous Solutions onto Natural Sepiolite, Colloid. Surface A., 277(1-3): 90-97 (2006).
[15] Karaoglu M. H., Dogan M., Alkan M., Removal of Cationic Dyes by Kaolinite, Micropor. Mesopor. Mat., 122: 20–27(2009).
[16] Tahir H., Muhammad A., Alam A., Bibi Jamil R., Qadri M., Structural Modifications of Surfactant-Assisted Alumina and Their Effectiveness for the Removal of Dyes, Iran. J. Chem. Chem. Eng. (IJCCE), 37(1):47-60 (2018).
[17] Hernández-Montoya V., Pérez-Cruz M. A., Mendoza-Castillo D. I., Moreno-Virgen M. R., Bonilla-Petriciolet A., Competitive Adsorption of Dyes and Heavy Metals on Zeolitic Structures, J. Environ. Manag.116: 213-221 (2013).
[18] Li Y., Du Q., Liu T., Peng X., Wang J., Sun J., Xia L., Comparative Study of Methylene Blue Dye Adsorption onto Activated Carbon, Graphene Oxide, And Carbon Nanotubes, Chem. Eng. Res. Des, 91(2): 361-368 (2013).
[19] Dehghani M. H., Naghizadeh A., Rashidi A., Derakhshani E., Adsorption of Reactive Blue 29 Dye from Aqueous Solution by Multiwall Carbon Nanotubes, Desalin. Water Treat., 51(40-42): 7655-7662 (2013).
[21] Kamranifar M., Naghizadeh A. Montmorillonite Nanoparticles in Removal of Textile Dyes from Aqueous Solutions: Study of Kinetics and Thermodynamics, Iran. J. Chem. Chem. Eng. (IJCCE), 36(6):127-137 (2017).
[22] Kausar A., Iqbal M., Javed A., Aftab K., Bhatti H. N., Nouren S., Dyes Adsorption Using Clay and Modified Clay: A Review, J. Mol. Liq., 256: 395-407 (2018).
[23] Yener J., Kopac T., Dogu G., Dogu T., Adsorption of Basic Yellow 28 from Aqueous Solutions with Clinoptilolite and Amberlite, J. Colloid. Interf. Sci., 294: 255–264 (2006).
[24] España V. A. A., Sarkar B., Biswas B., Rusmin R., Naidu, R., Environmental Applications of Thermally Modified and Acid Activated Clay Minerals: Current Status of the ArtEnviron. Technol. Innov., 13: 383-397 (2016).
[25] Kausar A., Iqbal M., Javed A., Aftab K., Bhatti H. N., Nouren S., Dyes Adsorption Using Clay and Modified Clay: A Review, Journal of Molecular Liquids, 256: 395-407 (2018).
[26] Martínez-López S., Lucas-Abellán C., Serrano-Martínez A., Mercader-Ros M. T., Cuartero N., Navarro P., Pérez S., Gabaldon J. A., Gómez-López V. M., Pulsed Light for a Cleaner Dyeing Industry: Azo Dye Degradation by an Advanced Oxidation Process Driven by Pulsed LightJ. Clean. Prod., 217:757-766 (2019).
[27] Zaharia C., Suteu, D. Muresan A., Muresan R., Popescu A., Textile Wastewater Treatment by Homogenous Oxidation with Hydrogen Peroxide, Environ. Eng. Manag. J., 8(6): 1359-1369 (2009).
[30] Shaida M. A., Sen A. K., Dutta R. K., Alternate Use of Sulphur Rich Coals as Solar Photo-Fenton Agent for Degradation of Toxic Azo Dyes, J. Clean. Prod., 195: 1003-1014 (2018).
[31] Bendjama H., Merouani S., Hamdaoui O., Bouhelassa M., UV-Photolysis of Chlorazol Black in Aqueous Media: Process Intensification Using Acetone and Evidence of Methyl Radical Implication in the Degradation Process, J. Photoch. Photobio A., 368: 268-275 (2019).
[32] Chakma S., Moholkar V. S., Mechanistic Analysis of Sono-Photolysis Degradation of Carmoisine, J. Ind. Eng. Chem., 33: 276-287 (2016).
[33] Alireza N. E., Setareh Khorsandi S., Photocatalytic Degradation of 4-Nitrophenol with ZnO Supported Nano-Clinoptilolite Zeolite, J. Ind. Eng. Chem., 20(3): 937-946 (2014).
[34] Mekatel H., Amokrane S., Bellal B., Trari M., Nibou D., Photocatalytic Reduction of Cr (VI) on Nanosized Fe2O3 Supported on Natural Algerian Clay: Characteristics, Kinetic and Thermodynamic Study, Chem. Eng. J., 200:611-618 (2012).
[35] Vinayagam M., Ramachandran S., Ramya V., Sivasamy A., Photocatalytic Degradation of Orange G Dye Using ZnO/Biomass Activated Carbon Nanocomposite, J. Environ. Chem. Eng., 6: 3726-3734(2018).
[36] Zhu H., Jiang R., Fu Y., Guan Y., Yao  J., Xiao L., Effective Photocatalytic Decolorization of Methyl Orange Utilizing TiO2/ZnO/chitosan Nanocomposite Films under Simulated Solar Irradiation, Desalination, 286: 41-8 (2012).
[37] Nasrallah  N., Kebir M., Koudri  Z., Trari  M., Photocatalytic Reduction of Cr (VI) on the Novel Hetero-System CuFe2O4/CdS, J. Hazard. Mater., 185(2-3): 1398-1404 (2011).
[39] Kamranifar, M., Naghizadeh, A., Montmorillonite Nanoparticles in Removal of Textile Dyes from Aqueous Solutions: Study of Kinetics and Thermodynamics, Iran. J. Chem. Chem.  Eng. (IJCCE), 36(6): 127-137 (2017).
[40] Bergaya F. Theng B. K. G., Lagaly G., General Introduction: Clays, Clay Minerals, and Clay Science, Handbook of Clay Science: Developments in Clay Science, 1: 1-18 (2006).
[41] Ratnamala G.M., Deshannavar U.B., Munyal S., Tashildar K., Patil S., Shinde A., Adsorption of Reactive Blue Dye from Aqueous Solutions Using Sawdust as Adsorbent: Optimization, Kinetic, and Equilibrium Studies, Arab. J. Sci. Eng., 41(2): 333-344 (2016).
[42] Olgun A., Atar N., Equilibrium and Kinetic Adsorption Study of Basic Yellow 28 and Basic Red 46 by a Boron Industry Waste, J. Hazard. Mater., 161(1): 148-156 (2009).
[43] Yagub M.T., Sen T.K., Afroze S., Ang H.M., Dye and Its Removal from Aqueous Solution by Adsorption: A Review, Adv. Colloid. Interface., 209: 172-184(2014).
[44] Subramani S.E., Thinakaran N., Isotherm, Kinetic and Thermodynamic Studies on the Adsorption Behaviour of Textile Dyes onto Chitosan, Process. Saf. Environ., 106:1-10 (2017).
[45] Aid A., Amokrane S., Nibou D., Mekatel E., Trari M., Hulea V., Modeling Biosorption of Cr (VI) onto Ulva Compressa L. from Aqueous Solutions, Wat. Sci. Tech., 77 (1): 60-69 (2018).
[46] Naghizadeh A., Nabizadeh R., Removal of Reactive Blue 29 Dye by Adsorption on Modified Chitosan in the Presence of Hydrogen Peroxide, Environ. Protect. Eng., 42(1):   -    (2016).
[47] Abdelnaeim, M. Y., El Sherif, I. Y., Attia, A. A., Fathy, N. A., & El-Shahat, M. F.. Impact of chemical Activation on the Adsorption Performance of Common Reed Towards Cu (II) and Cd (II)Int. J.  Miner. Process., 157: 80-88 (2016).
[48] Göçenoğlu Sarıkaya A., Osman B., Kara, A., Evaluation of the Effectiveness of Microparticle-Embedded Cryogel System in Removal of 17 Β-Estradiol from Aqueous Solution, Desalin. Water Treat., 57(33): 15570-15579 (2016).
[49] Osman B., Özer E. T., Kara A., Yeşilova E., Beşirli N., Properties of Magnetic Microbeads in Removing Bisphenol-A from Aqueous Phase, J. Porous Mat., 22(1): 37-46 (2015).
[51] Boparai H. K., Joseph M., O’Carroll D. M., Kinetics and thermodynamics of Cadmium ion Removal by Adsorption onto Nano Zerovalent Iron ParticlesJ. Hazard. Mater., 186(1): 458-465 (2011).
[53] Kara  A., Demirbel  E., Tekin N., Osman B., Beşirli, N., Magnetic Vinylphenyl Boronic Acid Microparticles for Cr(VI) Adsorption: Kinetic, Isotherm and Thermodynamic StudiesJ. Hazard. Mater., 286: 612-623 (2015).
[54] Nibou D., Mekatel H., Amokrane S., Barkat M., Trari M., Adsorption of Zn2+ Ions onto Naa And Nax Zeolites: Kinetic, Equilibrium and Thermodynamic StudiesJ. Hazard. Mater., 173: 637-646 (2010).
[55] Ho Y., McKay G., A comparison of Chemisorption Kinetic Models Applied to Pollutant Removal on Various Sorbents, Process. Saf. Environ. Prot., 76 (4): 332-340 (1998).
[56] Wei C., Song X., Wang Q., Hu Z., Sorption Kinetics, Isotherms and Mechanisms of PFOS on Soils with Different Physicochemical Properties, Ecotox. Environ. Safe., 142: 40-50 (2017).
[57] Safieh K. A. A., Al-Degs Y.S., Sunjuk M.S., Selective Removal of Dibenzothiophene From Commercial Diesel Using Manganese Dioxide-Modified Activated Carbon: A Kinetic Study, Environ. Technol., 36(1): 98-105 (2015).
[58] Yeşilova E., Osman B., Kara A., Özer E. T., Molecularly Imprinted Particle Embedded Composite Cryogel for Selective Tetracycline Adsorption, Sep. Purif. Technol., 200: 155-163 (2018).
[59] Wu F. C., Tseng R. L., Juang, R. S., Initial Behavior of Intraparticle Diffusion Model Used in the Description of Adsorption Kinetics, Chem. Eng. J., 153(1-3): 1-8 (2009).
[60] Weber W.J., Morris J.C., Kinetics of Adsorption on Carbon Solution, J. San. Eng. Div. ASCE., 89: 31–59 (1963).
[61] Syafiuddin A., Salmiati S., Jonbi J., Fulazzaky M. A., Application of the Kinetic and Isotherm Models for Better Understanding of the Behaviors of Silver Nanoparticles Adsorption onto Different Adsorbents, J. Environ. Manag., 218: 59-70
[62] Gupta V. K., Agarwal S., Saleh T. A., Synthesis And Characterization of Aluminacoated Carbon Nanotubes and their Application for Lead Removal, J. Hazard. Mater.185 (1): 17–23 (2011).
[63] Magdy Y. H., Altaher H., Kinetic Analysis of the Adsorption of Dyes from High Strength Wastewater on Cement Kiln Dust, J. Environ. Chem. Eng., 6: 834-841 (2018).
[64] Yao C., Chen T., A Film-Diffusion-Based Adsorption Kinetic Equation and Its Application, Chem. Eng. Res. Des., 119: 87-92 (2017).
[65] Li Z., Liu G., Su Q., Jin X., Wen X., Zhang G., Huang R., Kinetics and Thermodynamics of NPX Adsorption by Γ-Feooh in Aqueous Media, Arab. J. Chem., 11(6): 910-917 (2018).
[66] Abbas M., Kaddour S., Trari M., Kinetic and Equilibrium Studies of Cobalt Adsorption on Apricot Stone Activated Carbon, J. Ind. Eng. Chem., 20(3): 745-751 (2014).
[68] Hadadi N., Kananpanah S., Abolghasemi H., Equilibrium and Thermodynamic Studies of Cesium Adsorption on Natural Vermiculite and Optimization of Operation Conditions, Iran. J. Chem. Chem.  Eng. (IJCCE), 28(4): 29-36 (2009).
[69] Derakhshani E., Naghizadeh A., Optimization of Humic Acid Removal by Adsorption Onto Bentonite and Montmorillonite Nanoparticles, J. Mol. Liq., 259: 76-81 (2018).
[71] Kara  A., Tekin N., Alan A., Şafaklı A., Physicochemical parameters of Hg (II) Ions Adsorption from Aqueous Solution by Sepiolite/poly (vinylimidazole), J. Environ. Chem. Eng., 4(2): 1642-1652 (2016).
[72] Koyuncu M., Removal of Maxilon Red GRL from Aqueous Solutions by Adsorption onto Silica, Orient. J. Chem., 25(1): 35-40 (2009).
[73] Koyuncu M., Adsorption Properties of Basic Dyes (Maxilon Red GRL and Maxilon Yellow GRL) onto Bentonite, Asian. J. Chem., 21(7): 5458-5464 (2009).
[74] El-Sayed G. O., Mohammed T. Y., Salama, A. A. A, Batch Adsorption of Maxilon red GRL from Aqueous Solution by Natural Sugarcane Stalks Powder, ISRN. Environ. Chem., 2: 1-8 (2013).
[74] Graba Z., Hamoudi S., Bekka D., Bezzi N., Boukherroub R., Influence of Adsorption Parameters of Basic Red Dye 46 by the Rough and Treated Algerian Natural Phosphates, J. Ind. Eng. Chem., 25: 229-238 (2015).
[75] Martin M. J., Artola A., Balaguer M. D., Rigola, M., Activated Carbons Developed from Surplus Sewage Sludge for the Removal of Dyes from Dilute Aqueous SolutionsChem. Eng. J.94(3): 231-239 (2003).
[76] Boughelout A., Zebbar N., Macaluso R., Zohour Z., Bensouilah A., Zaffora A., Trari, M., Rhodamine (B) Photocatalysis under Solar Light on High Crystalline ZnO Films Grown by Home-Made DC Sputtering Optik, International Journal for Light and Electron Optics., 174 :77–85 (2018).
[77] Chabane L., Zebbar N., Kechouane M., Aida M. S., Trari M., Al-Doped and in-Doped ZnO Thin Films in Heterojunctions with Silicon, Thin Solid Films, 605: 57-63 (2016).
[78] Ameen S., Akhtar M. S., Shin H. S., Speedy Photocatalytic Degradation of Bromophenol Dye over ZnO Nanoflowers, Mate. Lett., 209 :150-154 (2017).
[79] Chekir N., Tassalit D., Benhabiles O., Merzouk N. K., Ghenna M., Abdessemed A., Issaadi R., A Comparative Study of Tartrazine Degradation Using UV and Solar Fixed Bed Reactors, Int. J. Hydrogen Energ., 42(13): 8948-8954 (2017).