Highly Efficient Destruction of Perchlorate to Nontoxic Chloride Ion (Cl-) from Aqueous Solutions by Bimetallic Fe/Ni Nanoparticles

Document Type : Research Article


Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, P.O. Box 15875-1774 Tehran, I.R. IRAN


In this work, stabilized Ni/Fe bimetallic nanoparticles (S-Ni/Fe NPs) were synthesized in the presence of starch as the stabilizing agent and characterized by FE-SEM, EDS, and XRD. The results showed that the S-Ni/Fe NPs were spherical in the shape and have a nearly uniform distribution with a particle size of 20-50 nm. Then, perchlorate as a persistent inorganic pollutant was destructed to chloride ion by the S-Ni/Fe NPs. The main factors controlling the removal of perchlorates, such as the initial pH of the solution, the dosage of the S–Fe/Ni NPs, initial perchlorate concentration, temperature, and reaction time were optimized by using an experimental design based on response surface methodology. Under the optimal conditions, perchlorate was destructed with an efficiency of nearly 100%. The kinetics for the destruction of perchlorate by the S-Ni/Fe NPs complied with pseudo-first-order characteristics. The rate constant (Kobs) and activation energy (Ea) for the destruction were obtained 0.0471 1/min at 343 K and 13.07 kJ/mol, respectively. Therefore, the present study offers a powerful bimetallic nanoparticle for the destruction of the environmental oxidant pollutants such as perchlorate from aqueous media.


Main Subjects

[1] Nordberg M., Templeton D.M., Andersen O., Duffus J.H., Glossary of Terms Used in Ecotoxicology (IUPAC Recommendations 2009), Pure. Appl. Chem., 81:829-970 (2009).
[2] Xie Y., Tao G., Chen Q., Tian X., Effects of Perchlorate Stress on Growth and Physiological Characteristics of Rice (Oryza Sativa L.) Seedlings, Water. Air. Soil. Poll., 225: 2077-2084 (2014).
[3] Urbansky E.T., Perchlorate as an Environmental Contaminant, Environ. Sci. Pollut. Res., 9: 187-192 (2002).
[4] Y.Liu Y., Cheng Y., Lv S., Liu C., Lai J., Luo G., Synthesis of Nano-CuI and Its Catalytic Activity in the Thermal Decomposition of Ammonium Perchlorate, Res. Chem. Intermed., 41: 3885–3892 (2015).
[5] McNabb F.M., Larsen C.T., Pooler P.S., Ammonium Perchlorate Effects on Thyroid Function and Growth in Bobwhite Quail Chicks, Environ. Toxicol. Chem., 23: 997-1003 (2004).
[6] Amitai Y., Winston G., Sack J., Wasser J., Lewis M., Blount B.C., Valentin-Blasini L., Fisher N., Israeli A., Leventhal A., Gestational Exposure to High Perchlorate Concentrations in Drinking Water and Neonatal Thyroxine Levels, Thyroid, 17:843-850 (2007).
[7] Burda C., Chen X., Narayanan R., El-Sayed M.A., Chemistry and Properties of Nanocrystals of Different Shapes, Chem. Rev., 105: 1025-1102 (2005).
[8] Pearson, C.R., Hozalski, R.M., Arnold, W.A., Degradation of Chloropicrin in the Presence of Zero‐Valent Iron, Environ. Toxicol. Chem.,24: 3037-3042 (2005).
[9] Daraei H., Amrane A., Kamali H., Assessment of Phenol Removal Efficiency Synthesized Zero Iron Nanoparticles and Fe Powder Using the Response Surface Methodology, Iran. J. Chem. Chem. Eng. (IJCCE), 36: 137-146 (2017).
[10] Fu R., Yang Y., Xu Z., Zhang X, Guo X., Bi D., The Removal of Chromium (VI) and Lead (II) from Groundwater Using Sepiolite-Supported Nanoscale Zero-Valent Iron (S-NZVI), Chemosphere, 138: 726-734 (2015).
[11] Cao J., Elliott D, Zhang W.X., Perchlorate Reduction by Nanoscale Iron Particles, J. Nanopart. Res., 7: 499-506 (2005).
[12] Wang CB., Zhang W.X., Synthesizing Nanoscale Iron Particles for Rapid and Complete Dechlorination of TCE and PCBs, Environ. Sci. Technol., 31:2154-2156 (1997).
[14] Keshipour S., Adak K., Reduction of Nitroaromatics to Amines with Cellulose Supported Bimetallic Pd/Co Nanoparticles, Iran. J. Chem. Chem. Eng. (IJCCE), 37: 23-31 (2018).
[15] Murray R.W., Nanoelectrochemistry: Metal Nanoparticles, Nanoelectrodes, and Nanopores, Chem. Rev., 108:2688-2720 (2008).
[16] Bing Y., Liu H., Zhang L., Ghosh D., Zhang J., Nanostructured Pt-Alloy Electrocatalysts for PEM Fuel Cell Oxygen Reduction Reaction, Chem. Soc. Rev., 39: 2184-2202 (2010).
[17] Sun S., Murray C., Weller D., Folks L., Moser A., Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices, Science, 287: 1989-1992 (2000).
[18] Song H.M., Kim W.S., Lee Y.B., Hong J.H., Lee H.G., Hur N.H., Chemically Ordered FePt3 Nanoparticles Synthesized by a Bimetallic Precursor and Their Magnetic Transitions, J. Mater. Chem., 19: 3677-3681 (2009).
[20] Kim D.K., Mikhaylova M., Zhang Y., Muhammed M., Protective Coating of Superparamagnetic Iron Oxide Nanoparticles, Chem. Mater., 15: 1617-1627 (2003).
[21] Chatterjee J., Haik Y, Chen C.J., Polyethylene Magnetic Nanoparticle: A New Magnetic Material for Biomedical Applications, J Magn. Magn. Mater., 246: 382-391 (2002).
[22] Pardoe H., Chua-Anusorn W., Pierre T.G.S., Dobson J., Structural and Magnetic Properties of Nanoscale Iron Oxide Particles Synthesized in the Presence of Dextran or Polyvinyl Alcohol, J. Magn. Magn. Mater., 225: 41-46 (2001).
[23] Kataby G., Ulman A., Prozorov R., Gedanken A., Coating of Amorphous Iron Nanoparticles by Long-Chain Alcohols, Langmuir, 14:1512-1515 (1998).
[27] Yazdanbakhsh A.R., Daraei H., Rafiee M., Kamali H., Performance of iron Nano-Particles and Bimetallic Ni/Fe Nanoparticles in Removal of Amoxicillin Trihydrate from Synthetic Wastewater, Water Sci. Technol., 73: 2998-3007 (2016).
[29] McCarty P.L, Meyer T.E., Numerical Model for Biological Fluidized-Bed Reactor Treatment of Perchlorate-Contaminated Groundwater, Environ. Sci. Technol., 39: 850-858 (2005).
[30] Xiong Z., Dimick P., Zhao D., Kney A., Tavakoli J., Removal of Perchlorate from Contaminated Water Using a Regenerable Polymeric Ligand Exchanger, Sep. Sci. Technol., 41: 2555-2574 (2006).
[31] Chen W., Cannon F.S., Rangel-Mendez J.R., Ammonia-tailoring of GAC to enhance perchlorate removal. II: Perchlorate adsorption, Carbon, 43: 581-590 (2005).
[32] Yoon J., Yoon Y., Amy G., Cho J., Foss D., Kim T.H., Use of Surfactant Modified Ultrafiltration for Perchlorate (ClO 4) Removal, Water Res., 37: 2001-201 (2001).
[33] Moore A.M., De Leon C.H., Young T.M., Rate and Extent of Aqueous Perchlorate Removal by Iron Surfaces, Environ. Sci. Technol., 37: 3189-3198 (2003).
[34] Cao J., Elliott D., Zhang W., Perchlorate Reduction by Nanoscale Iron Particles, J Nanopart. Res., 7: 499-506 (2005).
[36] Moore A.M., De Leon, C.H., Young, T.M., Rates and Extent of Aqueous Perchlorate Removal by Iron Surfaces, Environ. Sci. Technol., 37: 3189-3198 (2003).
[37] Nabar G., Ramachandran C., Quantitative Determination of Perchlorate Ion in Solution, Anal. Chem., 31: 263-265 (1959).
[38] Lin Y., Chen Z., Megharaj M., Naidu R., Degradation of Scarlet 4BS in Aqueous Solution Using Bimetallic Fe/Ni Nanoparticles, J. Colloid.  Interface Sci., 381: 30-35 (2012).
[39] Geng B., Jin Z., Li T., Qi X., Kinetics of Hexavalent Chromium Removal from Water by Chitosan-Fe0 Nanoparticles, Chemosphere, 75: 825-830 (2009).
[40] Montgomery S.L., Permian Bone Spring Formation: Sandstone Play in the Delaware Basin, Part II-Basin, AAPG Bulletin, 81: 1423-1434 (1997).
[41] Gao H., Liu M., Liu J., Dai H., Zhou X., Liu X., Zhuo Y., Zhang W., Zhang L., Medium Optimization for the Production of Avermectin B1a by Streptomyces Avermitilis 14-12A Using Response Surface Methodology, Bioresour. Technol., 100:4012-4016 (2009).
[42] Su J.J., Zhou Q., Zhang H.Y., Li Y.Q., Huang X.Q., Xu Y.Q., Medium Optimization for Phenazine-1-Carboxylic Acid Production by a Gaca Qscr Double Mutant of Pseudomonas sp. M18 Using Response Surface Methodology, Bioresour. Technol., 101: 4089-4095 (2010).
[43] Gu B., Dong W., Brown G.M., Cole D.R., Complete Degradation of Perchlorate in Ferric Chloride and Hydrochloric Acid Under Controlled Temperature and Pressure, Environ. Sci. Technol., 37: 2291-2295 (2003).
[44] Chen J.L., Al-Abed S.R., Ryan J.A., Li Z., Effects of pH on Dechlorination of Trichloroethylene by Zero-Valent Iron, J. Hazard. Mater., 83:243-254 (2001).
[45] Srinivasan R., Sorial G.A., Treatment of Perchlorate in Drinking Water: A Critical Review, Sep. Pur Technol., 69: 7-21 (2009).