Machine Learning Approaches for Prediction of Phase Equilibria in Poly (Ethylene Glycol) + Sodium Phosphate Aqueous Two-Phase Systems

Document Type : Research Article


1 Chemical Engineering Department, Faculty of Engineering, Shomal University, PO Box 731 Amol, I.R. IRAN

2 Faculty of Chemical Engineering and Environmental Protection "Cristofor Simionescu", "Gh. Asachi" Technical University, Bld Mangeron 73, 700050, Iasi, ROMANIA


In this research, liquid-liquid equilibrium (LLE) data were experimentally obtained for the ternary systems of (water + carboxylic acid + dipropyl ether) at T = 298.2 K and P = 101.3 kPa. The carboxylic acids used in this study were isobutyric acid, valeric acid, and isovaleric acid. All these systems are according to Treybal classification, Type-2 systems because the two binary subsystems are partially miscible. The lowest distribution coefficients and separation factors were calculated for isobutyric acid (40 and 329, respectively). The authenticity of the experimental equilibrium data was identified from Hand and Othmer-Tobias correlations.  The experimental tie-line data were correlated by using the nonrandom two-liquid (NRTL) and universal quasi-chemical (UNIQUAC) activity coefficient models. RMSD values are between 0.0112 and 0.0155 for the NRTL model, and are between 0.0083 and 0.0153 for UNIQUAC model.


Main Subjects

[1] Rahimpour F., Feyzi F., Maghsodi S., Kaul R.H., Purification of Plasmid DNA with Polymer-Salt Aqueous Two-Phase System: Optimization Using Response Surface Methodology, Biotech. Bioeng. 95(4): 627-637(2006).
[4] Shahbaz Mohamadia H., Omidinia E., Purification of Recombinant Phenylalanine Dehydrogenase by Partitioning in Aqueous Two-Phase Systems, J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 854(1-2): 273-278 (2007).
[5] Shahbaz Mohamadia H., Omidinia E., Process Integration for the Recovery and Purification of Recombinant Pseudomonas Fluorescens Proline Dehydrogenase Using Aqueous Two-Phase Systems, J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 929(1): 11-17 (2013).
[7] Ibarra-Herrera C., Aguilar O., Rito-Palomares M., Application of an aqueous two-phase system strategy for the potential recovery of a recombinant protein from Alfalfa (Medicago Sativa), Sep. Purif. Technol., 77(1): 94–98 (2011).
[8] Wang Z.H., Song M., Ma Q., Two-Phase Aqueous Extraction of Chromium and its Application to Speciation analysis of Chromium in Plasma, Mikrochim. Acta., 134(1-2): 95–99 (2000).
[10] Zheng Y., Tong Y., Wang Sh., Zhang H., Yang Y., Mechanism of Gold (III) Extraction Using a Novel Ionic Liquid-Based Aqueous Two Phase System without Additional Extractants, Sep. Purif. Technol., 154(1): 123–127 (2015).
[11] Patrício P.R., Mesquita M.C., da Silva L.H.M., da Silva M.C.H., Application of Aqueous Two-Phase Systems for the Development of a New Method of Cobalt(II), Iron(III) and Nickel(II) Extraction: A Green Chemistry Approach, J. Hazard. Mater., 193(1): 311-318 (2011).
[14] de Lemos L. R., Araújo Campos R., Rodrigues G.D, da Silva L.H. M., da Silva M.C. H., Green Separation of Copper and Zinc Using Triblock Copolymer Aqueous Two-Phase Systems, Sep. Purif. Technol., 115(1): 107–113 (2013).
[15] de Lemos L. R., Araújo Campos R., Rodrigues G.D, da Silva L.H. M., da Silva M.C. H., Copper Recovery from ore by Liquid–Liquid Extraction Using Aqueous Two-Phase System, J.Hazard. Mater., 237238(1): 209-214 (2012).
[16] Khayati Gh., Ghanadzadeh Gilani H., Safari Keyvani Z., Extraction of Cu (II) Ions from Aqueous Media Using PEG/Sulphate Salt Aqueous Two-Phase System,  Sep Sci. Technol., 51(4): 601-608 ( 2016).
[17] Chen Y., Liu X., Lu Y., Zhang X., Investigation of Gallium Partitioning Behavior in Aqueous Two-Phase Systems Containing Polyethylene Glycol and Ammonium Sulfate, J. Chem. Eng. Data., 54(7): 2002–2004 (2009).
[19] Yongqiang Zh. , Tichang S.,  Qingxia H.,  Qing G., Tieqiang L., Yingchao G., Chunhuan Y., A Green Method for Extracting Molybdenum (VI) from Aqueous Solution with Aqueous Two-Phase System without any Extractant, Sep. Purif. Technol., 169(1): 151–157 (2016).
[20] Smolik M., Jakóbik‐Kolon A., Porański M.,  Extraction of Zirconium and Hafnium in Polyethylene Glycol‐Based Aqueous Biphasic System, Sep. Purif. Technol., 42(8): 1831–1841 (2007).
[21] Rito-Palomares M., Practical Application of Aqueous Two-Phase Partition to Process Development for the Recovery of Biological Products, J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 807(1): 3–11 (2004).
[22] Asenjo J.A., Andrews B. A., Aqueous Two-Phase Systems for Protein Separation: A Perspective, J. Chromatogr. A.  1281(49): 8826-8835 (2011).
[24] Rosa P.A., Azevedo A.M., Sommerfeld S., Bäcker W., Aires-Barros M.R., Aqueous Two-Phase Extraction as a Platform in the Biomanufacturing Industry: Economical and Environmental Sustainability. Biotechnol. Adv., 29(6):559–567 (2011).
[26] Luechaua F., Ling T. Ch., Lyddiatt A., A descriptive Model and Methods for Up-Scaled Process Rutes for Interfacial Partition of Bioparticles in Aqueous Two-Phase Systems, Biochem. Eng. J., 50(3): 122–130 (2010).
[27] Hu R., Feng X., ChenP., Fu M.,  Chen H., Guo L., Liu  B-F., Rapid, Highly Efficient Extraction and Purification of Membrane Proteins Using a Microfluidic Continuous-Flow Based Aqueous Two-Phase System. J. Chromatogr. A., 1218(1): 171–177 (2011).
[28] Rodrigues G.D., Teixeira L.D., Ferreira G.M.D., da Silva M.D.H., da Silva L.H.M.,  de Carvalho R.M.M., Phase Diagrams of Aqueous Two-Phase Systems with Organic Salts and F68 Triblock Copolymer at Different Temperatures, J. Chem. Eng. Data., 55(3): 1158–1165 (2010).
[29] Espitia-Saloma E., Vázquez-Villegas P., Aguilar O., Rito-Palomares M., Continuous Aqueous Two-Phase Systems Devices for the Recovery of Biological Products, Food Bioprod. Process., 92(2): 101–112 (2014).
[30] Raghavarao K, Ravganathan T., Srinivas N., Barhate R., Aqueous Two-Phase Extraction—An Environmentally Benign Technique, Clean Technol. Environ. Policy., 5(2):136–141 (2003).
[31] Rodrigues G.D., de Lemos L. R., da Silva L.H.M., da Silva M.C.H., Application of Hydrophobic Extractant in Aqueous Two-Phase Systems for Selective Extraction of Cobalt, Nickel and Cadmium, J. Chromatogr. A., 1279(1):13-19 (2013).
[32] Hatti-Kaul R., "Methods in Biotechnology: Aqueous Two-Phase Systems: Methods and Protocols", Humana Press Inc., Totowa, NJ (2000).
[34] Kan P., Lee Ch-J., A Neural Network Model for Prediction of Phase Equilibria in Aqueous Two-Phase ExtractionInd. Eng. Chem. Res., 35(6):2015-2023 (1996).
[35] Alvarez-Guerra E., Ventura S.P.M., Alvarez-Guerra M., Coutinho J.A.P., Irabien A., Modeling of the Binodal Curve of Ionic Liquid/Salt Aqueous Systems, Fluid Phase Equilib., 426(1): 10-16 (2016).
[36] Shahriari Sh., Shahriari Sh., Predicting Ionic Liquid Based Aqueous Biphasic Systems with Artificial Neural Networks. J. Mol. Liq., 197(1): 65-72 (2014).
[38] dos Santos G.S., Luvizotto L.G.J., Mariani V.C., Coelho L.D.S., Least Squares Support Vector Machines with Tuning Based on Chaotic Differential Evolution Approach Applied to the Identification of a Thermal Process,  Expert Syst Appl. 39(5): 4805-4812 (2012).
[39] Rodriguez-Galiano V., Sanchez-Castillo M., Chica-Olmo M., Chica-Rivas M., Machine Learning Predictive Models for Mineral Prospectivity: An Evaluation of Neural Networks, Random Forest, Regression Trees and Support Vector Machines, Ore Geol. Rev., 71(1): 804-818 (2015).
[40   Yarveicy H., Ghiasi M. M., Mohammadi A. H., Performance Evaluation of the Machine Learning Approaches in Modeling of CO2 Equilibrium Absorption in Piperazine Aqueous Solution," J.Mol.Liq. 255(1): 375-383 (2018).
[41] Jaramillo F., Orchard M., Muñoz C., Antileo C., Sáez D., Espinoza P., On-Line Estimation of the Aerobic Phase Length for Partial Nitrification Processes in SBR Based on Features Extraction and SVM Classification, Chem. Eng. J.,  331(1): 114-123 (2018).
[42] Naseri F., Jafari F., Mohseni E., Tang W., Feizbakhsh A., Khatibinia M., Experimental Observations and SVM-Based Prediction of Properties of Polypropylene Fibres Reinforced Self-Compacting Composites Incorporating Nano-CuO, Constr.Build.Mater.143(1) :589-598 (2017).
[43] Ansari H. R., Gholami A., An Improved Support Vector Regression Model for Estimation of Saturation Pressure of Crude Oils, Fluid Phase Equilib. 402(1): 124-132 (2015).
[44] Eslamimanesh A., Gharagheizi F., Illbeigi M., Mohammadi A. H., Fazlali A., Richon D., Phase Equilibrium Modeling of Clathrate Hydrates of Methane, Carbon Dioxide, Nitrogen, and Hydrogen+Water Soluble Organic Promoters using Support Vector Machine Algorithm, Fluid Phase Equilib. 316(25): 34-45 (2012).
[45] Marghny M., Abd El-Aziz R. M., Taloba A. I., Differential Search Algorithm-Based Parametric Optimization of Fuzzy Generalized Eigenvalue Proximal Support Vector Machine, Int. J. Comput. Appl., 108(19): 0975–8887 (2014).
[46] Barani A., Pirdashti M.., Rostami A.A.,Liquid-Liquid Equilibrium of Poly (Ethylene Glycol) 1500 + di-Potassium Tartrate +water at Different pH (6.41, 7.74 and 9.05), Fluid Phase Equilib., 459(1): 1-9 (2018).
[49] Curteanu S., Suditu G., Buburuzan A. M., Dragoi E. N., Neural Networks and Differential Evolution Algorithm Applied for Modelling the Depollution Process of Some Gaseous Streams, Environ. Sci. Pollut. Res. Int., 21(22): 12856-12867 (2014).
[50] Dragoi E.-N., Curteanu S., Cascaval D., Galaction A.-I., Artificial Neural Network Modelling of Mixing Efficiency in a Split-Cylinder Gas-Lift Bioreactor for Yarrowia Lipolytica Suspensions, Chem. Eng. Commun., 203(12): 1600-1608 (2016).
[51] Bleotu I., Dragoi E. N., Mureşeanu M., Dorneanu S.-A., Removal of Cu(II) Ions from Aqueous Solutions by an Ion-Exchange Process: Modeling and Optimization, Environ Prog. Sustain Energy, 37(1): 605-612 (2018).
[52] Fernandez J. C., Hervas C., Martinez-Estudillo F. J., Gutierrez P.A., Memetic Pareto Evolutionary Artificial Neural Networks to Determine Growth/No-Growth in Predictive Microbiology, Appl. Soft. Comput., 11(1): 534-550 (2011).
[53] Forciniti D., Hall C.,  Kula M.-R., Influence of Polymer Molecular Weight and Temperature on Phase Composition in Aqueous Two-Phase Systems, Fluid Phase Equilib., 61(3): 243-262 (1991).
[54] Voros N., Proust P.,  Fredenslund A., Liquid-Liquid Phase Equilibria of Aqueous Two-Phase Systems Containing Salts and Polyethylene Glycol, Fluid Phase Equilib., 90(2): 333-353(1993).
[55] Gonzalez-Amado M., Rodil E., Arce A., Soto A., Rodríguez O., The Effect of Temperature on Polyethylene Glycol (4000 or 8000)+(sodium or ammonium) Sulfate Aqueous Two Phase Systems, Fluid Phase Equilib., 428(1): 95-101 (2016).
[56] Hartounian H., Floeter E., Ka E., Sandler S., Effect of Temperature on the Phase Equilibrium of Aqueous Two‐Phase Polymer Systems, AIChE J., 39(12): 1976-1984 (1993).