Photochemical Degradation of an Environmental Pollutant by Pure ZnO and MgO Doped ZnO Nanocatalysts

Document Type : Research Article

Authors

1 Department of Chemistry, South Tehran Branch, Islamic Azad University, Tehran, I.R. IRAN

2 Department of Chemistry, Lahijan Branch, Islamic Azad University, Lahijan, I.R. IRAN

3 Department of Chemistry, Roudsar and Amlash Branch, Islamic Azad University, Roudsar, I.R. IRAN

Abstract

MgO doped ZnO and pure ZnO nanoparticles were successfully synthesized by the sedimentary method. The products were characterized by XRD, TEM, and EDX. XRD patterns showed that the doped nanoparticles had the same crystal structures as the pure ZnO nanoparticles. Pure ZnO nanoparticles had a larger lattice volume than MgO doped ZnO nanoparticles. The photochemical degradation of indole 3- butyric acid as a pollutant in aqueous solutions was investigated by both pure and MgO doped ZnO under UV light irradiation. The effect of different parameters such as indole 3- butyric acid concentration, photocatalyst amount, PH, oxidant concentration on degradation of I-3BA, and optimum condition was obtained.

Keywords

Main Subjects


[1] Richter T.V., Stelzl F., Schulz-Gericke J., Kerscher B., Wurfel U., Niggemann M., Ludwigs S., Room Temperature Vacuum-Induced Ligand Removal and Patterning of ZnO Nanoparticles: from Semiconducting Films Towards Printed Electronics, J. Mater. Chem., 20(5): 874-879 (2010).
[2] Kumpika T., Thongswan W., Singjai P., Optical and Electrical Properties of ZnO Nanoparticle Thin Films Deposited on Quartz by Sparking Process, Thin Solid Films, 516(16): 5640-5644 (2008).
[3] Djurisic A.B., Ng A.M.C., Chen X.Y., ZnO Nanostructures for Optoelectronics: Material Properties and Device Applications, Prog. Quant. Electron., 34(4): 191-259 (2010).
[4] Zhang C.F., Zhang F., Xia T., Kumar N., Hahm J.I., Liu J., Wang Z.L., Xu J., Low-Threshold Two-Photon Pumped ZnO Nanowire Lasers, Opt. Express, 17(10): 7893-7900 (2009).
[5] Hoffman A.J., Carraway E.R., Hoffmann M.R., Photocatalytic Production of H2O2 and Organic Peroxides on Quantum-Sized Semiconductor Colloids, Environ. Sci. Technol., 28(5): 776-785 (1994).
[6] Giahi M., Taghavi H., Habibi S., Photocatalytic Degradation of Betamethasone Sodium Phosphate in Aqueous Solution Using ZnO Nanopowder, Russian Journal of Physical Chemistry A, 86(13): 2003-2007 (2012).
[7] Giahi M., Badalpoor N., Habibi S., Taghavi H.,  Synthesis of CuO/ ZnO Nanoparticles and Their Application for Photocatalytic Degradation of Lidocaine HCl by the Trial-and-error and Taguchi Methods, Bulletin of the Korean Chemical Society, 34(7): 2176-2182 (2013).
[8] Janitabar Darzi S., Movahedi M., Visible Light Photodegradation of Phenol Using Nanoscale TiO2 and ZnO Impregnated with Merbromin Dye: A Mechanistic Investigation, Iran. J. Chem. Chem. Eng., 33(2): 55-64 (2014).
[9] Pouretedal H.R., Basati S.,Characterization and Photocatalytic Activity of ZnO, ZnS, ZnO/ZnS, CdO, CdS and CdO/CdS Nanoparticles in Mesoporous SBA-15, Iran. J. Chem. Chem. Eng. (IJCCE), 34(1): 11-19 (2015).
[10] Giahi M., Taghavi H., Saadat S., Abdolahzadeh Ziabar A., Synthesis of CuO-ZnO and its Application in Photocatalytic Degradation of Nonylphenol Polyethoxylate, Optoelectronics and Advanced Materials-Rapid Communications, 9(11-12): 1514-1519 (2015).  
[11] Giahi M., Hoseinpour Dargahi A., Photocatalytic Degradation of Phenylephrine Hydrochloride in Aqueous Solutions by Synthesized Sno2-Doped ZnO Nanophotocatalyst, Iranian Journal of Catalysis, 6(4): 381-387 (2016).
[12] Al-Dahash G., Khilkala W M., Abd Alwahid S.N., Preparation and Characterization of ZnO Nanoparticles by Laser Ablation in NaOH Aqueous Solution, Iran. J. Chem. Chem. Eng. (IJCCE), 37(1): 11-16 (2018).
[13] Gnanaprakasam A J., Sivakumar V M., Thirumarimurugan M., Investigation of Photocatalytic Activity of Nd-Doped ZnO Nanoparticles Using Brilliant Green Dye: Synthesis and Characterization, Iran. J. Chem. Chem. Eng. (IJCCE), 37(2): 61-71 (2018).
[14] Pan Z. W., Dai Z. R., Wang Z. L., Nanobelts of Semiconducting Oxides, Science, 291(5510): 1947-1949 (2001).
[15] Ozgur U., Alivov Y.I., Liu C., Teke A., Reshchikov M.A., Dogan S., Avvutin V., Cho S.J., Morkoc H., A Comprehensive  Review of ZnO Materials and Devices, J. Appl. Phys.98(4): 041301: 1-103 (2005).
[17] Li G.R., Bu Q., Zheng F.L., Su C.Y., Tong Y.X., Electrochemically Controllable Growth and Tunable Optical Properties of Zn1−xCdxO Alloy Nanostructures, Cryst. Growth Des., 9(3): 1538-1545 (2009).
[18] Luo T., Yang Y.C., Zhu Y.X., Chen G., Zeng F., Pan F., Enhanced Electromechanical Response Of Fe-Doped ZnO Films by Modulating the Chemical State and Ionic Size of the Fe Dopant,  Phys. Rev. B, 82(1): 014116-7 (2010). 
[19] Wang H.B., Wang H., Zhang C., Yang F.J., Duan J.X., Yang C.P., Gu H.S., Zhou M.J., Li Q.,  Jang Y., Preparation and Characterization of Mn and (Mn, Cu) Co-Doped ZnO Nanostructures, J. Nanosci. Nanotechnol., 9(5): 3308-3312 (2009).
[21] Han T., Fan T., Chow S.K., Zhang D., Biogenic N–P-codoped TiO2: Synthesis, Characterization and Photocatalytic Properties, Bioresource Technology, 101(17): 6829-6835 (2010).
[22] Hojat Ansari S., Giahi M., Photochemical Degradation of Fluocinolone Acetonidin Drug in Aqueous Solutions Using Nanophotocatalyst ZnO Doped by C, N, and S, Iran. J. Chem. Chem. Eng. (IJCCE), 36(3): 183-189 (2017). 
[23] Golic D.L., Brankovic G., Nesic M.P., Vojisavljevic K., Recnik A., Daneu N., Bernik S., Scepanovic M., Poltei D., Brankovic Z., Structural Characterization of Self-Assembled ZnO Nanoparticles Obtained by the Sol-Gel Method From Zn(CH3COO)2.2H2O, Nanotechnology, 22(39): 395603: 1-9 (2011).
[24] Li M., Bala H., Lv X., Ma X., Sun F., Tang L., Wang Z., Direct Synthesis of Monodispersed ZnO Nanoparticles in an Aqueous Solution, Mater. Lett., 61(3): 690-693 (2007).
[25] Guo L., Yang S.,  Yang C., Yu P., Wang J., Ge W., Wong J.K.L., Synthesis and Characterization of Poly(vinylpyrrolidone)-Modified Zinc Oxide Nanoparticles, Chem. Mater., 12(8): 2268-2274 (2000).
[26] Etacheri V., Roshan R., Kumar V., MgO-Doped ZnO Nanoparticles for Efficient Sunlight-Driven Photocatalysis, Acs. Appl. Mater. Interfaces, 4(5): 2717-2725 (2012).
[27] Cullity B.D., Stock S.R., “Elementary of X–Ray Diffraction”, 3rd ed., Prentice–Hall, Englewood Cliffs, New Jersey (2001).
[28] Meraat R., Abdolahzadeh Ziabari A., Issazadeh K., Shadan N., Jalali K.M., Synthesis and Characterization of the Antibacterial Activity of Zinc Oxide Nanoparticles against Salmonella typhi, Acta Metall. Sin. (Engl. Lett.), 29(7): 601-608 (2016).
[29] Behnajady M.A., Modirshahla N., Hamzavi R., Kinetic Study on Photocatalytic Degradation of C.I. Acid Yellow 23 by ZnO Photocatalyst, J. Hazard. Mater., B 133(1-3): 226-232 (2006).
[30] Titus M.P., Molina V.G., Banos M.A., Gimenes J., Esplugus S., Degradation of Chlorophenols by Means of Advanced Oxidation Processes: A General Review, Appl. Catal, B Environ, 47(4): 219-256 (2004).
[31] Mijin D., Savic M., Snezana P., Smiljanic A., Glavaski O., Jovanovic M., Petrovic S., A Study of the Photocatalytic Degradation of Metamitron in ZnO Water Suspensions, Desalination, 249(1), 286-292 (2009).
[32] Yang W.H., Tarng Y.S., Design optimization of Cutting Parameters for Turning Operations Based on the Taguchi Method, J. Mater. Process. Technol., 84(1-3): 122-129 (1998).
[33] Montgomery D.C., “Design and Analysis of Experiments”, 8th ed., Wiley, New York. (2012). 
[35] Liu Z.L., Deng J.C., Deng J.J., Li F.F., Fabrication and Photocatalysis of CuO/ZnO Nano-Composites via a New Method, Materials Science and Engineering B, 150: 99-104 (2008).
[36] Nibret1 A., Yadav O.P., Diaz I., Taddesse A.M., Cr-N co-Doped ZnO Nanoparticles: Synthesis, Characterization and Photocatalytic Activity for Degradation of Thymol Blue, Bull. Chem. Soc. Ethiop., 29(2): 247-258 (2015).