Oxidants Emergence under Dual-Frequency Sonication within Single Acoustic Bubble: Effects of Frequency Combinations

Document Type : Research Article

Authors

Laboratory of Environmental Engineering, Department of Process Engineering, Faculty of Engineering, Badji Mokhtar - Annaba University, P.O. Box 12, 23000 Annaba, ALGERIA

Abstract

The sonochemical activity of an oxygen bubble formed in an aqueous medium and oscillating under a dual-frequency excitation is studied in this paper. Several couples of frequencies are formed amongst 35, 140, 300, and 515 kHz, with a maximum acoustic amplitude of 1.5 atm. The molar yields of the emerging oxidants are analyzed in accordance with the combined frequencies and compared to the cases of mono-frequency excitations of similar maximum amplitude, i.e., 1.5 atm. Qualitatively, passing from a mono to a dual-frequency excitation demonstrated to be with no effect on the predominant species which remain, and. However, the results exhibited a very selective quantitative evolution depending on the combined frequencies. Some couples proved to induce a negative effect and reduce the production at the single bubble level, particularly with basic frequencies of 140 and 300 kHz, while some others demonstrated a noticeable enhancement such as the couples (35, 140 kHz) and (515, 35 kHz), as compared to mono-frequency fields.

Keywords

Main Subjects


[1] Salavati-Niasari M., Javidi J., Davar F., Sonochemical Synthesis of Dy2( CO3)3 Nanoparticles, Dy(OH)3 Nanotubes and their Conversion to Dy2O3 Nanoparticles, Ultrason. Sonochemistry, 17: 870–877(2010).
       doi:10.1016/j.ultsonch.2010.02.013.
[2] Momenian H.R., Gholamrezaei S., Salavati-Niasari M., Pedram B., Mozaffar F., Ghanbari D., Sonochemical Synthesis and Photocatalytic Properties of Metal Hydroxide and Carbonate (M:Mg, Ca, Sr or Ba) Nanoparticles, J. Clust. Sci., 24: 1031–1042 (2013).
       doi:10.1007/s10876-013-0595-y.
[3] Ghanbari D., Salavati-Niasari M., Ghasemi-Kooch M., A sonochemical Method for Synthesis of Fe3O4 Nanoparticles and Thermal Stable PVA-Based Magnetic Nanocomposite, J. Ind. Eng. Chem., 20: 3970-3974 (2014).
        doi:10.1016/j.jiec.2013.12.098.
[4] Zinatloo-Ajabshir S., Salavati-Niasari M., A Sonochemical-Assisted Synthesis of Pure Nanocrystalline Tetragonal Zirconium Dioxide Using Tetramethylethylenediamine, Int. J. Appl. Ceram. Tec., 662: 654-662 (2014).
       doi:10.1111/ijac.12269.
[5] Zinatloo-Ajabshir S., Mortazavi-Derazkola S., Salavati-Niasari M., Nd2O3-SiO2 Nanocomposites: A Simple Sonochemical Preparation, Characterization and Photocatalytic Activity, Ultrason. Sonochem,42: 171–182 (2018).
       doi:10.1016/j.ultsonch.2017.11.026.
[6] Monsef R., Ghiyasiyan-Arani M., Salavati-Niasari M., Application of Ultrasound-Aided Method for the Synthesis of NdVO4 Nano-Photocatalyst and Investigation of Eliminate Dye in Contaminant Water, Ultrason. Sonochem, 42: 201–211
(2018).
        doi:10.1016/j.ultsonch.2017.11.025.
[7] Wood R.J., Lee J., Bussemaker M.J., A Parametric Review of Sonochemistry: Control and Augmentation of Sonochemical Activity In Aqueous Solutions, Ultrason. Sonochem, 38: 351–370
(2017).
        doi:10.1016/j.ultsonch.2017.03.030.
[8] Brotchie A., Mettin R., Grieser F., Ashokkumar M., Cavitation Activation by Dual-Frequency Ultrasound and Shock Waves, Phys. Chem. Chem. Phys., 11: 10029–10034(2009).
        doi:10.1039/b912725a.
[9] Kanthale P.M., Gogate P.R., Pandit A.B., Modeling Aspects of Dual Frequency Sonochemical Reactors, Chem. Eng. J.. 127: 71–79 (2007).
        doi:10.1016/j.cej.2006.09.023.
[10] Zhang Y., Zhang Y., Li S., The Secondary Bjerknes Force Between Two Gas Bubbles Under Dual-Frequency Acoustic Excitation, Ultrason. Sonochem, 29: 129–145 (2016).
       doi:10.1016/j.ultsonch.2015.08.022.
       doi:10.1016/j.ultsonch.2016.10.022.
[12] Gogate P.R., Mujumdar S., Pandit A.B., Sonochemical Reactors for Waste Water Treatment: Comparison using Formic Acid Degradation as a Model Reaction, Adv. Environ. Res., 7: 283–299 (2003).
       doi:10.1016/S1093-0191(01)00133-2.
[13] Feng R., Zhao Y., Zhu C., Mason T.J., Enhancement of Ultrasonic Cavitation Yield By Multi-Frequency Sonication, Ultrason. Sonochem., 9: 231–236 (2002).
       doi:10.1016/S1350-4177(02)00083-4.
       doi:10.1016/S1385-8947(01)00179-6.
[15] Moholkar V.S., Rekveld S., Warmoeskerken M.M.C.G., Modeling of the Acoustic Pressure Fields and the Distribution of the Cavitation Phenomena in a Dual Frequency Sonic Processor, Ultrason, 38: 666–670 (2000).
[16] Suzuki T., Yasui K., Yasuda K., Iida Y., Tuziuti T., Torii T., Nakamura M., Effect of Dual Frequency on Sonochemical Reaction Rates, Res. Chem. Intermed., 30: 703–711 (2004).
       doi:10.1163/1568567041856873.
[17] Mettin R., Cairos C., Troia A., Sonochemistry and Bubble Dynamics, Ultrason. Sonochem., 25: 24–30 (2015).
       doi:10.1016/j.ultsonch.2014.08.015.
[18] Zhang Y., Chen F., Zhang Y., Zhang Y., Du X., Experimental Investigations of Interactions Between a Laser-Induced Cavitation Bubble and a Spherical Particle, Exp. Therm. Fluid Sci., 98: 645-661 (2018).
        doi:10.1016/j.expthermflusci.2018.06.014.
[19] Prosperetti A., Modelling of Spherical Gas Bubble Oscillations and Sonoluminescence, R. Soc., 357: 203–223 (1999).
       doi: 10.1098/rsta.1999.0324
[20] Hickling R., Plesset M.S., The Collapse of a Spherical Cavity in a Compressible Liquid, Report No. 85-24, California Institute of Technology, Pasadena, CA.
[21] Yasui K., Alternative Model of Single Bubble Sonoluminescence, Phys. Rev. E., 56: 6750–6760 (1997).
        doi:10.1103/PhysRevA.65.054304.
[22] Yasui K., Influence of Ultrasonic Frequency on Multibubble Sonoluminescence, Acoust. Soc. Am., 112: 1405–1413 (2002).
       doi:10.1121/1.1502898.
[23] Tuziuti T., Effect of Particle Addition on Sonochemical Reaction, Ultrasonics,42: 597–601 (2004).
        doi:10.1016/j.ultras.2004.01.082.
[24] Price G.J., Harris N.K., Stewart A.J., Direct Observation of Cavitation Fields at 23 and 515 kHz, Ultrason. Sonochem, 17: 30–33 (2010).
       doi:10.1016/j.ultsonch.2009.04.009.
[25] Merouani S., Hamdaoui O., Rezgui Y., Guemini M., Computational Engineering Study of Hydrogen Production via Ultrasonic Cavitation in Water, Int. J. Hydrogen Energy., 41: 832–844 (2016).
       doi:10.1016/j.ijhydene.2015.11.058.
        doi:10.1016/S0009-2509(02)00271-3.
       doi:10.1016/j.ultsonch.2010.11.022.
[28] Guédra M., Inserra C., Gilles B., J.C. Béra, Numerical Investigations of Single Bubble Oscillations Generated by a Dual Frequency Excitation, J. Phys. Conf. Ser., 656: 1-4(2015).
        doi:10.1088/1742-6596/656/1/012019.
[29] K. Kerboua, O. Hamdaoui, Numerical Investigation of the Effect of Dual Frequency Sonication on Stable Bubble Dynamics, Ultrason. Sonochem., 49: 325–332 (2018).
        doi:10.1016/j.ultsonch.2018.08.025.
[30] Yasui K., Tuziuti T., Lee J., Kozuka T., Towata A., Iida Y., The Range of Ambient Radius for an Active Bubble in Sonoluminescence and Sonochemical Reactions, J. Chem. Phys., 184705: 1-12(2012).
        doi:10.1063/1.2919119.
[31] Toegel R., Lohse D., Phase Diagrams for Sonoluminescing Bubbles: A Comparison Between Experiment and Theory, J. Chem. Phys., 118: 1863–1875 (2003).
        doi:10.1063/1.1531610.
[32] Pankaj, Ashokkumar, Muthupandian, "Theoretical and Experimental Sonochemistry Involving Inorganic Systems", Springer, (2011).
        doi: 10.1007/978-90-481-3887-6
[33] Hilgenfeldt S., Lohse D., Brenner M.P., Phase Diagrams for Sonoluminescing Bubbles, Phys. Fluids., 8: 2808–2826 (1996).
        doi:10.1063/1.869131.
[34] Zhang Y., Zhang Y., Chaotic Oscillations of Gas Bubbles under Dual-Frequency Acoustic Excitation, Ultrason. Sonochem., 1–6 (2017).
        doi:10.1016/j.ultsonch.2017.03.058.
[35] Diaz De La Rosa M.A., Husseini G.A., Pitt W.G., Comparing Microbubble Cavitation at 500 kHz and 70 kHz Related to Micellar Drug Delivery Using Ultrasound, Ultrasonics, 53: 377–386 (2013).
        doi:10.1016/j.ultras.2012.07.004.
[36] Calvisi M.L., Lindau O., Blake J.R., Szeri A.J.,  Blake J.R., Shape stability and Violent Collapse of Microbubbles in Acoustic Traveling Waves, Phys. Fluids., 047101: 1-15 (2011).
       doi:10.1063/1.2716633.
[37] Suzuki H., Lee I.S., Okuno Y., Stability and Dancing Dynamics of Acoustic Single Bubbles in Aqueous Surfactant Solution, Int. J. Phys. Sci., 5: 176–181 (2010).
[38] Yasui K., Fundamentals of Acoustic Cavitation and Sonochemistry, in: "Theor. Exp. Sonochemistry Involv. Inorg. Syst.", National Institute of Advanced Industrial Science and Technology, Anagahora-Japan, pp. 1–29 (2011).
        doi:10.1007/978-90-481-3887-6.
       doi:10.1016/J.ULTSONCH.2017.12.015.
       doi:10.1016/j.ultsonch.2017.10.001.
[41] Kerboua K., Hamdaoui O., Computational study of State Equation Effect on Single Acoustic Cavitation Bubble’s Phenomenon, Ultrason. Sonochem., 38: 174–188 (2017).
        doi:10.1016/j.ultsonch.2017.03.005.
[42] Kerboua K., Hamdaoui O., Acoustic cavitation Bubble under Dual-Frequency Excitation: An Energetic Reading, Arab. J. Sci. Eng. (2019).
[43] Yasui K., Iida Y., Tuziuti T., Kozuka T., Towata A., Strongly Interacting Bubbles under an Ultrasonic Horn, Phys. Rev. E., 77: 1–10 (2008).
        doi:10.1103/PhysRevE.77.016609.
[44] Mettin R., Koch P., Lauterborn W., Krefting D., "Modeling Acoustic Cavitation with Bubble Redistribution", Int. Symp. Cavitation. (2006).
[45] Zhang Y., Guo Z., Du X., Wave Propagation in Liquids with Oscillating Vapor-Gas Bubbles, Appl. Therm. Eng., 133: 483–492 (2018).
        doi:10.1016/j.applthermaleng.2018.01.056.