Dehydroacetic Acid-Phenylhydrazone as a Potential Inhibitor for Wild-Type HIV-1 Protease: Structural, DFT, Molecular Dynamics, 3D QSAR and ADMET Characteristics

Document Type : Research Article


1 Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4041, SOUTH AFRICA

2 Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, 410001, Enugu State, NIGERIA

3 Department of Industrial Chemistry, Enugu State University of Science and Technology Enugu, State, NIGERIA

4 Department of Pure and Industrial Chemistry, Nnamdi Azikiwe University, P.M.B 5025, Awka, Anambra State, NIGERIA

5 South Ural State University, Laboratory of Computational Modelling of Drugs, Tchaikovsky Str. 20-A, Chelyabinsk, RUSSIA


Despite several studies towards anti-HIV therapy, HIV infections remain a challenge due to the resistivity of developed drugs. The emergence of new HIV-1 PR mutations has led to the drug resistance of the available FDA-approved drugs and lower activity towards the HIV protease. Based on this the molecular properties of 4-hydroxy-6-methyl-3-[(1E)-1-(2-phenylhydrazinylidene) ethyl]-2H-pyran-2-one (DHAA-PH) has been carried out using the hybrid Density Functional Theory (DFT) and Time-Dependent (TDFT) method at B3LYP/6-31+G(d,p) levels of theory. To substantiate the sensitivity of functional applied M06-2X/ 6-311++G(2d,2p) and mPWB1W/6-311++G(2d,2p) was used to calculate the geometric, IR, 1H NMR, and energy gap calculations.DFT calculations with M06-2X and mPWB1W were observed to agree with the experiment compared to B3LYP functional. The absorption spectra of DHAA-PH showed three distinct bands which were designated as S0 to S1, S0to S2, and S0 to S3 in order of increasing energy. The high intensity (oscillator strength) of S0 to S1 infers that the transition is quantum-mechanically allowed, while the low intensity of S0 to S2 and S0 to S3 transitions suggests quantum mechanically forbidden transitions. Molecular dynamics simulations revealed that the obtained MMGBSA binding energies are better compared to the experimentally reported binding energies for HIV-1 protease inhibitors. 3D QSAR and computational ADMET study were performed. Pharmacophore fragments of the compound were identified as well as the fragments determining its toxicity and metabolic properties. Based on the analysis of these fragments, the ways to further design promising HIV1-protease inhibitors were proposed.


Main Subjects

[2] Wlodawer A., Rational Approach to AIDS Drug Design Through Structural Biology, Annu. Rev. Med (ARM), 53(1): 595-614 (2002).
[3] Sham H.L. Zhao, C., Stewart, K.D., Betebenner D.A., Lin S., Park C.H., Kong X.P., Rosenbrook W., Herrin T., Madigan D., A novel, Picomolar Inhibitor of Human Immunodeficiency Virus Type 1 Protease, J. Med. Chem. (JMC),  39(2): 92-397 (1996).
[4] Honarparvar B., Makatini M.M., Pawar S.A., Petzold K., Soliman M.E., Arvidsson P.I., Sayed Y., Govender T., Maguire G.E., Kruger H.G., Pentacycloundecane‐diol‐Based HIV‐1 Protease Inhibitors: Biological Screening, 2D NMR, and Molecular Simulation Studies, Chem. Med. Chem (CMC),7(6): 1009-1019 (2012.)
[5] Wlodawer A., Miller M., JASK6LsKi M., Sathyanarayana B.K., Baldwin E., Weber I.T., Selk L.M., Clawson L., Schneider J., Kent S.B., Crystal Structure of Synthetic HIV-Protease, Science, 245(4918): 6I6-621 (1989).
[6] Swain A.L., Miller M.M., Green J., Rich D.H., Schneider J., Kent S., Wlodawer A., X-ray Crystallographic Structure of a Complex Between a Synthetic Protease of Human Immunodeficiency Virus 1 and a Substrate-Based Hydroxyethylamine Inhibitor, Proceedings of the National Academy of Sciences (NAS), 87(22): 8805-8809 (1990).
[9] Velazquez-Campoy A., Kiso Y., Freire E., The Binding Energetics of First-and Second-Generation HIV-1 Protease Inhibitors: Implications for Drug Design, Arch. Biochem. Biophys. (ABB), 390(2): 169-175 (2001)
[10] King N.M., Prabu-Jeyabalan M., Nalivaika E.A., Wigerinck P., de Béthune M.P., Schiffer C.A., Structural and Thermodynamic Basis for the Binding of TMC114, a Next-Generation Human Immunodeficiency Virus Type 1 Protease Inhibitor, J. Virol. (JV), 78(21): 12012-12021 (2004).
[11] McCoy C., Darunavir: a Nonpeptidic Antiretroviral Protease Inhibitor, Clin Ther (CT), 29(8): 1559-1576 (2007).
[12] Woodard B.T., Posner G.H., Recent Advances in Diels-Alder Cycloadditions of 2-Pyrones, Advances in Cycloaddition, 5: 47-84 (1999).
[13] Gupta A., Pal R., Beniwal V., Novel Dehydroacetic Acid Based Hydrazone Schiff's Base Metal Complexes of First Transition Series: Synthesis and Biological Evaluation Study, World J. Pharm. Pharmaceut. Sci, 4(1): 4990-1008 (2015).
[15] Raman N., Thalamuthu S., Dhaveethuraja J., Neelakandan M., Banerjee S., DNA Cleavage and Antimicrobial Activity Studies on Transition Metal (II) Complexes of 4-Aminoantipyrine Derivative, J. Chil Chem. Soc (JCCS), 53(1): 1439-1443 (2008).
[16] Ujam O., Ogbonna O., Oliver A., Ume J., Janusson E., Chime C., Crystal Structure of 4-hydroxy-6-methyl-3-[(1E)-1-(2-phenylhydrazinylidene) ethyl]-2H-pyran-2-one, Journal of Struct Chem, (SC) 58(3): 636-639 (2017).
[17] Rosenfeld R., Vajda S., DeLisi C., Flexible Docking and Design, Annu Rev Biophys Biomol Struct (ARBBS), 24(1): 677-700 (1995).
[18] Holloway M.K., Wai J.M., Halgren T.A., Fitzgerald P.M., Vacca J.P., Dorsey B.D., Levin R.B., Thompson W.J., Chen L.J., A Priori Prediction of Activity for HIV-1 Protease Inhibitors Employing Energy Minimization in the Active Site, J. Med. Chem (JMC) 38(2): 305-317 (1995).
[19] Caflisch A., Karplus M., Computational Combinatorial Chemistry for De Novo Ligand Design: Review and Assessment, Perspectives in Drug Discovery and Design (PDDD), 3(1): 51-84 (1995).
[21] Briggs J.M., Marrone T.J., McCammon J.A., Computational Science New Horizons and Relevance to Pharmaceutical Design, Trends Cardiovasc Med (TCM) 6(6): 198-203 (1996).
[22] Srinivasan J., Cheatham T.E., Cieplak P., Kollman P.A., Case D.A., Continuum Solvent Studies of the Stability of DNA, RNA, and Phosphoramidate− DNA Helices, J. Am. Chem. Soc (JACS), 120(37): 9401-9409 (1998).
[23] Kollman P.A., Massova I., Reyes C., Kuhn B., Huo S., Chong L., Lee M., Lee T., Duan Y., Wang W., Calculating structures and Free Energies of Complex Molecules: Combining Molecular Mechanics and Continuum Models, Acc. Chem. Res (ACR), 33(12): 889-897 (2000).
[24] Gourmala C., Luo Y., Barbault F., Zhang Y., Ghalem S., Maurel F., Fan B., Elucidation of the LewisX–LewisX carbohydrate Interaction With Molecular Dynamics Simulations: A Glycosynapse ModelJ. Molec. Struct: THEOCHEM, 821(1): 22-29 (2007).
[25] Shaikh S.A., Jayaram B., A Swift All-Atom Energy-Based Computational Protocol to Predict DNA− Ligand Binding Affinity and ΔTm, J. Med. Chem 50(9): 2240-2244 (2007).
[27] Ode H., Matsuyama S., Hata M., Hoshino T., Kakizawa J., Sugiura W., Mechanism of Drug Resistance due to N88S in CRF01_AE HIV-1 Protease, Analyzed By Molecular Dynamics Simulations, J. Med. Chem. (JMC) 50(8): 1768-1777 (2007).
[29] Onufriev A., Bashford D., Case D.A., Exploring Protein Native States and Large‐Scale Conformational Changes with a Modified Generalized Born Model, Proteins: Structure, Function, and Bioinformatics 55(2): 383-394 (2004).
[31] Lee C., Yang W., Parr R.G., Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density, Phys. Rev B, 37(2): 785-789 (1988).
[33] Wolinski K., Hinton J.F., Pulay P., Efficient Implementation of the Gauge-Independent Atomic Orbital Method for NMR Chemical Shift Calculations, J. Am. Chem. Soc. (JACS) 112(23): 8251-8260 (1990).
[35] De Souza L.A., Tavares W.M., Lopes A.P.M., Soeiro M.M., De Almeida W.B., Structural Analysis of Flavonoids In Solution Through DFT 1H NMR Chemical Shift Calculations: Epigallocatechin, Kaempferol and Quercetin, Chem. Phys. Lett., 676: 46-52 (2017)
[36] Patet R.E., Caratzoulas S., Vlachos D.G., Adsorption in Zeolites Using mechanically Embedded ONIOM Clusters, Phys. Chem. Chem. Phys., 18(37): 26094-26106 (2016).
[37] Calixto A.R., Brás N.F., Fernandes P.A., Ramos M.J., Reaction Mechanism of Human Renin Studied by Quantum Mechanics/Molecular Mechanics (QM/MM) Calculations, ACS Catal., 4(11): 3869-3876 (2014).
[38] Ibeji C.U., Tolufashe G.F., Ntombela T., Govender T., Maguire G.E., Lamichhane G., Kruger H.G., Honarparvar B., The Catalytic Role of Water in the Binding Site of L,D Transpeptidase 2 within Acylation Mechanism: A QM/MM (ONIOM) Modeling, Tuberculosis  113: 222-230 (2018).
[39] Cao Y., Han S., Yu L., Qian H.,. Chen J.Z, MD And QM/MM Studies on Long-Chain L-Alpha-Hydroxy Acid Oxidase: Substrate Binding Features and Oxidation Mechanism, J. Phys. Chem. B, 118(20): 5406-17 (2014).
[40] Frisch M., Trucks G., Schlegel H.B., Scuseria G., Robb M., Cheeseman J., Scalmani G., Barone V., Mennucci B., Petersson G., Gaussian 09, Revision D. 01, Gaussian, Inc., Wallingford CT, (2009).
[41] Reed A.E, Curtiss L.A., Weinhold F., Intermolecular Interactions from a Natural Bond Orbital, Donor-Acceptor Viewpoint, Chem. Rev. 88(6): 899-926 (1988).
[42] Sanner M.F., Python: a Programming Language for Software Integration and Development, J Mol Graph Model, 17(1): 57-61 (1999).
[43] Morris G.M., Huey R., Lindstrom W., Sanner M.F., Belew R.K., Goodsell D.S., Olson A.J., AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility, J. Comput. Chem. 30(16): 2785-2791 (2009).
[44] Morris G.M., Goodsell D.S., Halliday R.S., Huey R., Hart W.E., Belew R.K., Olson A.J., Automated Docking Using a Lamarckian Genetic Algorithm and an Empirical Binding Free Energy Function, J. Comput. Chem. 19(14): 1639-1662 (1998).
[45] Huey R., Morris G.M., Olson A.J., Goodsell D.S., A Semiempirical Free Energy Force Field with Charge‐Based Desolvation, J. Comput. Chem. 28(6): 1145-1152 (2007).
[46] Schrödinger L., PyMOL The PyMOL Molecular Graphics System, Version, (2010).
[47] Case D., Berryman J., Betz R., Cerutti D., Cheatham I., Darden T.A, Duke R.E, Giese T.J., Gohlke H., Goetz A.W., Homeyer N., Izadi S., Janowski P., Kaus J., Kovalenko A., Lee TS., LeGrand S., Li P., Luchko T., Luo R., Madej B., Merz K.M., Monard G., Needham P., Nguyen H., Nguyen H.T, Omelyan I., Onufriev A., Roe D.R, Roitberg A., Salomon-Ferrer R., Simmerling C.L., Smith W., Swails J., Walker R.C., Wang J., Wolf R.M., Wu X., York D.M., Kollman  P.A., AMBER 14. 2014, University of California, San Francisco. (2015).
[48] Jorgensen W.L., Chandrasekhar J., Madura J.D., Impey R.W., Klein M.L, Comparison of Simple Potential Functions for Simulating Liquid WaterJ. Chem. Phys., 79(2): 926-935 (1983)
[49] Case D., Darden T., Cheatham III T., Simmerling C., Wang J., Duke R., Luo R., Crowley M., Walker R., Zhang W., AMBER, Version 10, University of California: San Francisco, CA  (2008).
[50] Case D., Babin V., Berryman J., Betz R., Cai Q., Cerutti D., Cheatham III T., Darden T., Duke R., Gohlke H., AMBER 14. 2014, University of California, San Francisco  (2014).
[51] Hornak V., Abel R., Okur A., Strockbine B., Roitberg A., Simmerling C., Comparison of Multiple Amber Force Fields and Development of Improved Protein Backbone Parameters, PROTEINS. 65: 712-725 (2006).
[52] Wang J.M., Wolf, R.M., Caldwell J.W., Kollman P.A., Case, D.A., Development and Testing of a General Amber Force Field, J. Comput Chem. (JCC), 25: 1157–1174  (2004).
[53] Ryckaert J.P., Ciccotti, G., Berendsen, H. J. C., Numerical Integration of the Cartesian Equations of Motion of A System with Constraints: Molecular Dynamics of N-Alkanes, J. Comput. Phys. (JCP), 23: 327–341 (1977).
[54] Harvey F.G.D.,  An Implementation of the Smooth Particle Mesh Ewald Method on GPU HardwareJ. Chem. Theory Comput 5(9): 2371–2377 (2009).
[55] Roe D.R., Cheatham III T.E., PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data, J. Chem. Theory Comput 9(7) 3084-3095 (2013).
[56] Sitkoff D., Sharp K.A., Honig B., Accurate Calculation of Hydration Free Energies Using Macroscopic Solvent Models, J. Phys. Chem. 98(7) 1978-1988 (1994).
[57] Potemkin A.V., Grishina M.A., Potemkin V.A., Grid-Based Continual Analysis of Molecular Interior for Drug Discovery, QSAR and QSPR, Curr. Drug. Discov. Technol. 14(3): 181-205 (2017).
[58] Potemkin V., Grishina M., Principles for 3D/4D QSAR Classification of Drugs, Drug discovery today 13(21-22): 952-959 (2008).
[59] Potemkin V., Grishina M., Grid-Based Technologies for In Silico Screening and Drug Design, Curr. Med. Chem. 25(29): 3526-3537 (2018).
[60] Potemkin V., L. 21: Cinderella's Shoe for Virtual Drug Discovery Screening and Design, Drugs of the Future 35: 14 (2010).
[61] Chemosophia s.r.o., Prague, Accessed 16 (2018).
[62] Fakhar Z., Govender T., Lamichhane G., Maguire G.M.E., Kruger H.G., Honarparvar B., Computational Model for the Acylation Step of the Β-Lactam Ring: Potential Application for L,D-Transpeptidase 2 in Mycobacterium Tuberculosis, J. Mol. Struct. 1128: 94-102 (2017).
[63] Ibeji C.U., Adejoro I.A., Adeleke B.B., A Benchmark Study on the Properties of Unsubstituted and Some Substituted Polypyrroles, J. Phys. Chem. B, 5(6): 2161- 0398 (2015).
[64] Ekennia A.C., Osowole A.A., Olasunkanmi L.O., Onwudiwe D.C., Olubiyi O.O., Ebenso E.E., Synthesis, Characterization, DFT Calculations and Molecular Docking Studies of Metal (II) Complexes, J. Mol. Struct 1150: 279-292 (2017).
[65] Rauf S.M.A., Arvidsson P.I., Albericio F., Govender T., Maguire G.E., Kruger H.G., Honarparvar B., 
The Effect of N-Methylation of Amino Acids (Ac-X-Ome) on Solubility and Conformation: A DFT Study, Org Biomol. Chem. 13(39): 9993-10006 (2015).
[66]  Lawal M.M., Govender T., Maguire G.E., Kruger H.G., Honarparvar B., DFT Study of the Acid‐Catalyzed Esterification Reaction Mechanism of Methanol with Carboxylic Acid and Its Halide Derivatives, Int. J. Quantum Chem.  118(4): 25497 (2017).
[67]  Kazaoui S., Minami N., Tanabe Y., ByrneH.J., Eilmes A., Petelenz P., Comprehensive Analysis of Intermolecular Charge-Transfer Excited States in C 60 and C 70 Films, Phys. Rev. B 58(12): 7689-     (1998).
[68] Wallace A.C., Laskowski R.A., Thornton J.M., LIGPLOT: A Program to Generate Schematic Diagrams of Protein-Ligand Interactions, Protein Eng. 8(2): 127-134 (1995).
[69] Duan X., Zhang M., Zhang X., Wang F., Lei M., Molecular Modeling and Docking Study on Dopamine D2-Like and Serotonin 5-HT2A Receptors, J. Mol. Graph. Model. 57: 143–155 (2015).
[72] Minkara M.S., Ucisik M.N., Weaver M.N., Merz K.M., Molecular Dynamics Study of Helicobacter Pylori Urease, J. Chem. Theory Comput. 10(5): 1852-1862 (2014).
[73] Arodola O.A., Soliman M.E., Molecular Dynamics Simulations of Ligand-Induced Flap Conformational Changes in Cathepsin-D-A Comparative StudyJ. Cell. Biochem. 117(11): 2643-2657 (2016).
[74] Chen J., Liang Z., Wang W., Yi C., Zhang S., Zhang Q., Revealing Origin of Decrease in Potency of Darunavir and Amprenavir Against HIV-2 Relative to HIV-1 Protease by Molecular Dynamics Simulations, Scientific Reports 4:6872 (2014).
[75] Maseko S.B., Padayachee E., Govender T., Sayed Y., Kruger G., Maguire G.E., Lin J., I36T↑ T Mutation in South African Subtype C (C-SA) HIV-1 Protease Significantly Alters Protease-Drug Interactions, J. Biol. Chem. 398(10): 1109-1117 (2017).
[76] Martins-Costa M., Anglada J.M., Ruiz-López M.F., Hyperconjugation in Adjacent OO Bonds: Remarkable Odd/Even Effects, Chem. Phys. Lett. 481(4): 180-182 (2009).
[77] Greenway K.T., Bischoff A.G., Pinto B.M., Probing Hyperconjugation Experimentally with the Conformational Deuterium Isotope Effect, J. Org. Chem. 77(20): 9221-9226 (2012).
[78] Lipinski C.A., Lombardo F., Dominy B.W., Feeney P.J., Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings, Adv. Drug Deliv. Rev. 23(1-3): 3-25 (1997).
[79] Lipinski C.A., Lead-and Drug-like compounds: The Rule-of-Five Revolution, Drug Discov. Today: Technol. 1(4): 337-341 (2004).