New Chitosan-Silver Nanocomposites Containing N-Nicontinyl Phosphoric Triamide as an Antibacterial- Enhancer Additive

Document Type : Research Article


Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, I.R. IRAN


Three new nanocomposite films of Chitosan/ Ag NPs / N-Nicontinyl phosphoric triamide, containing 3% Ag NPs and 0%, 5% and 10% phosphoric triamide were prepared and characterized by X-ray Powder Diffraction (XRD), Field Emission Scanning Electron Microscopy (FE-SEM) and Energy Dispersive X-ray Spectroscopy (EDS) analysis methods. The nanocomposite films were prepared using ultrasonic waves plus cross-linking the chitosan part of biofilms as the final process and the Ag NPs were synthesized according to the citrate reduction method. XRD graph of the three nanocomposites showed all the characteristic peaks of the phosphoric triamide, Ag NPs, and chitosan, indicating the fact that the preparing process has not made any changes in the phases of the nanocomposites components. All the SEM micrographs and EDS analysis results confirmed the desired structures. In vitro antibacterial activities of the nanocomposite were tested against two Gram-positive bacteria: Staphylococcus aureus (S. aureus), Bacillus cereus (B. cereus) and two Gram-negative bacteria: Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa) in Brain-Heart Infusion (BHI) medium. Results revealed that the nanocomposite films, containing the phosphoric triamide additive, have better antibacterial effects than the one without this compound. Also, the antibacterial activity of the biofilms depends on the dosage of the phosphoric triamide and increases by raising the percentage of the additive in the structure of the biofilms.


Main Subjects

[1] Park J.H., Saravanakumar G., Kim K., Kwon I.C., Targeted Delivery of Low Molecular Drugs Using Chitosan and Its Derivatives, Adv. Drug Delivery Rev., 62(1): 28-41 (2010).
[2] Ueno H., Mori T., Fujinaga T., Topical Formulations and Wound Healing Applications of Chitosan,
Adv. Drug Delivery Rev., 52(2): 105-115 (2001).
[3] Yoo H.S., Lee J.E., Chung H., Kwon I.C., Jeong S.Y., Self-assembled Nanoparticles Containing Hydrophobically Modified Glycol Chitosan for Gene Delivery, J. Controlled Release, 103(1): 235-243 (2005).
[4] Chan P., Kurisawa M., Chung J.E., Yang Y.-Y., Synthesis and Characterization of Chitosan-g-Poly(ethylene glycol)-folate as a Non-Viral Carrier for Tumor-Targeted Gene Delivery, Biomaterials, 28(3): 540-549 (2007).
[5] Bratskaya S., Marinin D., Simon F., Synytska A., Zschoche S., Busscher H.J., Jager D., Van der Mei H., Adhesion and Viability of Two Enterococcal Strains on Covalently Grafted Chitosan and Chitosan/κ-Carrageenan Multilayers, Biomacromolecules 8(9): 2960-2968 (2007).
[6] Li J., Zivanovic S., Davidson P.M., Kit K., Production and Characterization of Thick, Thin and Ultra-Thin Chitosan/PEO films, Carbohydr. Polym., 83(2): 375-382 ( 2011).
[7] Hsu S.-H., Wang M.-C., Lin J.-J., Biocompatibility and Antimicrobial Evaluation of Montmorillonite/Chitosan Nanocomposites, Appl. Clay Sci., 56:53-62 (2012) .
[8] Han J., Zhou Z., Yin R., Yang D., Nie J., Alginate–Chitosan/Hydroxyapatite Polyelectrolyte
Complex Porous Scaffolds: Preparation and Characterization,  Int. J. Biol. Macromol. , 46(2): 199 205 (2010).
[9] Yamane S., Iwasaki N., Majima T., Funakoshi T., Masuko T., Harada K., Minami A., Monde K., Nishimura S.-I., Feasibility of Chitosan-Based Hyaluronic Acid Hybrid Biomaterial for a Novel Scaffold in Cartilage Tissue Engineering, Biomaterials, 26(6): 611-619 (2005).
[10] Hu L., Wu X., Han J., Chen L., Vass S. O., Browne P., Hall B.S., Bot C., Gobalakrishnapillai V., Searle P. F., Synthesis and Structure–Activity Relationships of Nitrobenzyl Phosphoramide Mustards as Nitroreductase-Activated Prodrugs, Bioorg. Med. Chem. Lett., 21(13): 3986-399 (2011).
[11] Pinto R. J., Fernandes S.C.M, Freire C. S., Sadocco P., Causio J., Neto C. P., Trindade T., Antibacterial Activity of Optically Transparent Nanocomposite Films Based on Chitosan or Its Derivatives and Silver Nanoparticles, Carbohydr. Res., 348: 77-83 (2012).
[12] Wang B.-L., Liu X.-S., Ji Y., Ren K.-F., Ji J., Fast and Long-Acting Antibacterial Properties of Chitosan-Ag/polyvinylpyrrolidone Nanocomposite Films, Carbohydr. Polym., 90(1): 8-15 (2012).
[13] Sanpui P., Murugadoss A., Prasad P.D., Ghosh S.S., Chattopadhyay A., The Antibacterial Properties of a Novel Chitosan–Ag-Nanoparticle Composite, Int. J. Food Microbiol., 124(2):142-146 (2008).
[16] Vimala K., Mohan Y.M., Sivudu K.S., Varaprasad K., Ravindra S., Reddy N.N., Padma Y., Sreedhar B., MohanaRaju K., Fabrication of Porous Chitosan Films Impregnated with Silver Nanoparticles:
a Facile Approach for Superior Antibacterial Application
, Colloids Surf., B 76 (1): 248-258 (2010).
[17] Kango S., Kalia S., Celli A., Njuguna J., Habibi Y., Kumar R., Surface Modification of Inorganic Nanoparticles for Development of Organic–Inorganic Nanocomposites—A Review, Prog. Polym. Sci., 38 (8): 1232-1261 (2013).
[18] Liu J., Jiang G., "Silver Nanoparticles in the Environment", Springer (2015).
[19] Schröfel A., Kratošová G., Šafařík I., Šafaříková M., Raška I., Shor L.M., Applications of Biosynthesized Metallic Nanoparticles–A Review, Acta Biomater., 10(10): 4023-5042 (2014).
[20] Fathalipour S., Pourbeyram S., Sharafian A., Tanomand A., Azam P., Biomolecule-Assisted Synthesis of Ag/reduced Graphene Oxide Nanocomposite with Excellent Electrocatalytic and Antibacterial Performance, Mater. Sci. Eng., 75: 742-751 (2017).
[21] Wang W., Zhang H., Tian C., Meng X., Numerical Experiments on Evaporation and Explosive Boiling of Ultra-Thin Liquid Argon Film on Aluminum Nanostructure Substrate, Nanoscale Res. Lett., 10(1):158-      (2015).
[22] Wiley B., Sun Y., Mayers B., Xia Y., Shape‐Controlled Synthesis of Metal Nanostructures: the Case of Silver, Chem. Eur. J., 11 (2): 454-463 (2005).
[23] Rao C., Kulkarni G., Thomas P.J., Edwards P.P., Size‐Dependent Chemistry: Properties of Nanocrystals, Chem. Eur. J., 8 (1): 28-35 (2002).
[25] Nishikawa Y., Nakano S., Tahira Y., Terazawa K., Yamazaki K., Kitamura C., Hara O., Chiral Pyridinium Phosphoramide as a Dual Brønsted Acid Catalyst for Enantioselective Diels–Alder Reaction, Org. Lett., 18(9): 2004-2007 (2016).
[27]  Rao K.K., Reddy P.R., Lee Y.-I., Kim C., Synthesis and Characterization of Chitosan–PEG–Ag Nanocomposites for Antimicrobial Application, Carbohydr. Polym., 87(1): 920-925 (2012).
[28] Gholivand K., Abdollahi M., Mojahed F., Alizadehgan A.M., Dehghan G., Acetylcholinesterase/ Butyrylcholinesterase Inhibition Activity of Some New Carbacylamidophosphate Deriviatives, J. Enzym. Inhib. Med. Ch., 24(2): 566-576 (2009).
[29] Gholivand K., Alizadehgan A.M., Mojahed F., Dehghan G., Mohammadirad A., Abdollahi M., Some New Carbacylamidophosphates as Inhibitors of Acetylcholinesterase and Butyrylcholinesterase, Z. Naturforsch. C., 63(3-4):241-250 (2008).
[31] Akgür S.A., Öztürk P., Solak I., Moral A. R., Ege B., Human Serum Paraoxonase (PON1) Activity in Acute Organophosphorous Insecticide Poisoning, Forensic Sci. Int., 133(1): 136-140 (2003).
[32] Zou X.J., Jin G.Y., Zhang Z.X., Ynthesis, Fungicidal Activity, and QSAR of Pyridazinonethiadiazoles.,
J. Agric. Food. Chem., 50(6):1451-1454 (2002).
[33] Wing K.D., Glickman A.H., Casida J.E., Phosphorothiolate Pesticides and Related Compounds: Oxidative Bioactivation and Aging of the Inhibited Acetylcholinesterase, Pestic. Biochem. Physiol., 21(1): 22-30 (1984).
[34] Miyamoto T., Kasagami T., Asai M., Yamamoto I., A Novel Bioactivation Mechanism of Phosphoramidate Insecticides, Pestic. Biochem. Physiol., 63(3):151-162 (1999).
[36] Oroujzadeh N., Rezaei Jamalabadi S., New Nanocomposite of N-Nicotinyl, N′, N″-bis (tert-butyl) Phosphorictriamide Based on Chitosan: Fabrication and Antibacterial Investigation, Phosphorus.Sulfur, 191(11-12): 1572-1573 (2016).
[38] Wang X., Du Y., Yang J., Wang X., Shi X., Hu Y., Preparation, Characterization and Antimicrobial Activity of Chitosan/Layered Silicate Nanocomposites, Polymer, 47(19): 6738-6744 (2006).