Sulfonated Magnetic Nanoparticles as Recyclable Catalyst for Facile One-Pot Green Synthesis of 3,4-Dihydro-2H-indazolo[1,2-b]phthalazine-1,6,11(13H)-trione Derivatives

Document Type : Research Article


1 Department of Chemistry, Bu-Ali Sina University, Hamedan, I.R. IRAN

2 Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah, I.R. IRAN


Sulfonated magnetic nanoparticles (SO3H-Fe3O4@SiO2 MNPs) have been explored as an efficient, cost-effective, and recyclable nanocatalyst for the facile synthesis of 3,4-dihydro-2H-indazolo[1,2-b]phthalazin-1,6,11(13H)-triones through a one-pot three-component reaction between aldehydes, dimedone, and phthalhydrazide under mild and green (solvent-free) conditions. Simple separation of the catalyst using an external magnet, efficient recyclability of the developed magnetic nanocatalyst up to five fresh runs without significant loss in its catalytic activity, excellent yields of the designed reactions (88 to 98%), low reaction times as well as solvent-free and facial reaction condition are some advantages of the present procedure that qualified the fabricated magnetic nanocatalyst for industrial applications.


Main Subjects

[1] Azarifar D., Asadpoor R., Badalkhani O., Jaymand M., Tavakoli E., Bazouleh M., Sulfamic-Acid-Functionalized Fe3-xTixO4 Nanoparticles as Novel Magnetic Catalyst for the Synthesis of Hexahydroquinolines under Solvent-Free Condition, ChemSelect., 3:13722-13728 (2018).
[3] Teimuri-Mofrad R., Esmati S., Rabiei M., Gholamhosseini-Nazari M., Efficient Synthesis of New pyrano[3,2-b]pyran Derivatives via Fe3O4@SiO2-IL-Fc Catalyzed Three Component Reaction, Heterocycl. Commun., 23:439-444 (2017).
[4] Schatz A., Reiser O., Stark W.J., Nanoparticles as Semi-Heterogeneous Catalyst Supports, Chem. Eur. J., 16: 8950-8967 (2010).
[5] Yan N., Xiao C.X., Kou Y., Transition Metal Nanoparticle Catalysis in Green Solvents, Coord. Chem. Rev., 254:1179-1218 (2010).
[6] Shylesh S., Schweizer J., Demeshko S., Schunemann V., Ernst S., Thiela W.R., Nanoparticle Supported, Magnetically Recoverable Oxodiperoxo Molybdenum Complexes: Efficient Catalysts for Selective Epoxidation Reactions, Adv. Synth. Catal., 351:1789-1795 (2009).
[7] Polshettiwar V., Varma R.S., Green Chemistry by Nano-Catalysis, Green Chem., 12: 743-754 (2010).
[8] Demiguel Y.R., Supported Catalysts and Their Applications in Synthetic Organic Chemistry, J. Chem. Soc. Perkin Trans., 1: 4213-4221 (2000).
[9] Sheldon R.A., Bekkum H. van, Eds., "Fine Chemicals Through Heterogeneous Catalysis", Wiley-VCH, Weinheim, (2001).
[10] Clark J.H., Macquarrie D.J., "Green Chemistry and Technology", Blackwell, Abingdon, (2002).
[11] Lim C.W., Lee I.S., Magnetically Recyclable Nanocatalyst Systems for the Organic Reactions, Nano Today., 5: 412-434 (2010).
[12] Shylesh S., Schunemann V., Thiel W.R., Magnetically Separable Nanocatalysts: Bridges between Homogeneous and Heterogeneous Catalysis, Angew. Chem., Int. Ed., 49: 3428-3459 (2010).
[13] Zhu Y.H., Stubbs L.P., Ho F., Liu R.Z., Ship C.P., Maguire J.A., Hosmane N.S., Magnetic Nanocomposites: A New Perspective in Catalysis, Chem. Cat. Chem., 2: 365-374 (2010).
[14] Polshettiwar V., Luque R., Fihri A., Zhu H.B., Bouhrara M., Bassett J.M., Magnetically Recoverable Nanocatalysts, Chem. Rev., 111: 3036-3075 (2011).
[15] Zeng T.Q., Chen W.W., Cirtiu C. M., Moores A., Song G.H., Li C.J., Fe3O4 Nanoparticles: A Robust and Magnetically Recoverable Catalyst for Three-Component Coupling of Aldehyde, Alkyne and Amine, Green Chem., 12: 570-573 (2010).
[17] Ying J., Lee R.M., Williams P.S., Jeffrey J.C., Sherif S.F., Brian B., Maciej Z., Blood Progenitor Cell Separation from Clinical Leukapheresis Product by Magnetic Nanoparticle Binding and Magnetophoresis, Biotechnol. Bioeng., 96:1139-1154 (2007).
[18] Gu H., Xu K., Xu C., Xu B., Biofunctional Magnetic Nanoparticles for Protein Separation and Pathogen Detection, Chem. Commun., 941-949 (2006).
[19] Poorgholy N., Massoumi B., Jaymand M., A Novel starch-based Stimuli-responsive Nanosystem for Theranostic Applications, Int. J. Biol. Macromol., 97:654-661 (2017).
[20] Lee J.H., Jun Y.W., Yeon S.I., Shin J.S., Dual-mode Nanoparticle Probes for High-Performance Magnetic Resonance and Fluorescence Imaging of Neuroblastoma, Angew. Chem., Int. Ed., 45:8160-8162 (2006).
[21] Akira I., Kouji T., Kazuyoshi K., Masashige S., Hiroyuki H., Kazuhiko M., Toshiaki S., Takeshi K., Tumor Regression by Combined Immunotherapy and Hyperthermia Using Magnetic Nanoparticles in an Experimental Subcutaneous Murine Melanoma, Cancer Sci., 94:308-313 (2003).
[23] Megia-Fernandez A., Ortega-Munoz M., Lopez-Jaramillo J., Hernandez-Mateo F., Santoyo-Gonzalez F., Non-magnetic and Magnetic Supported Copper(I) Chelating Adsorbents as Efficient Heterogeneous Catalysts and Copper Scavengers for Click Chemistry, Adv. Synth. Catal., 352: 3306-3320 (2010).
[24] Masteri-Farahani M., Taghizadeh F., Molybdenum-Schiff Base Complex Immobilized on Magnetite Nanoparticles as a Reusable Epoxidation Catalyst, Iran. J. Chem. Chem. Eng. (IJCCE), 37(6): 35-42 (2018).
[27] Khashi M., Allameh S., Beyramabadi S.A., Morsali A., Dastmalchian E., Gharib A., BiFeO3 Magnetic nanoparticles: A Novel, Efficient and Reusable Magnetic Catalyst for the Synthesis of Polyhydroquinoline Derivatives, Iran. J. Chem. Chem. Eng (IJCCE), 36:45-52 (2017).
[28] Arundhathi R., Damodara D., Likhar P.R., Kantam M.L., Saravanan P., Magdaleno T., Kwon S.H., Fe3O4@Mesoporouspolyaniline: A Highly Efficient and Magnetically Separable Catalyst for Coss-Coupling of Aryl Chlorides and Phenols, Adv. Synth. Catal., 353:1591-1600 (2011).
[29] Firouzabadi H., Iranpoor N., Gholinejad M., Hoseini J., Magnetite (Fe3O4) Nanoparticles-Catalyzed Sonogashira–Hagihara Reactions in Ethylene Glycol under Ligand-Free Conditions, Adv. Synth. Catal., 353:125-132 (2011).
[31] Mori K., Yoshioka N., Kondo Y., Takeuchi T., Yamashita H., Catalytically Active, Magnetically Separable, and Water-Soluble FePt Nanoparticles Modified with Cyclodextrin for Aqueous Hydrogenation Reactions, Green Chem., 11:1337-1342 (2009).
[32] Oliveira R.L., Kiyohara P.K., Rossi L.M., High Performance Magnetic Separation of Gold Nanoparticles for Catalytic Oxidation of Alcohols, Green Chem., 12:144-149 (2010).
[34] Ye M.M., Zhang Q., Ge Y.X., Hu J.P., Lu Z.D., He L., Chen Z.L., Yin Y.D., Magnetically recoverable Core–shell Nanocomposites with Enhanced Photocatalytic Activity, Chem. Eur. J., 16:6243-6250 (2010).
[36] Sreedhar B., Kumar A.S., Yada D., Magnetically Recoverable Pd/Fe3O4-Catalyzed Hiyama Cross-Coupling of Aryl Bromides with Aryl Siloxanes, Synlett, 1081-1084 (2011).
[38] Lu A.H., Salabas E.L., Schth F., Magnetic Nanoparticles: Synthesis, protection, Functionalization, and Application, Angew. Chem. Int. Ed., 46:1222–1244 (2007).
[39] Yamini Y., Faraji M., Rezaee M., Magnetic Nanoparticles: Synthesis, Stabilization, Functionalization, Characterization, and Applications, J. Iran. Chem. Soc., 7: 1-37 (2010).
[41] Roberto-Calderone V., Raveendran-Shiju N., Curulla-Ferre D., De novo Design of Nanostructured Iron–Cobalt Fischer–Tropsch Catalysts, Angew. Chem. Int. Ed., 52: 4397-4401 (2013).
[42] Dutta B., Jana S., Bhattacharjee A., Gutlich P., Iijima S.I., Koner S., γ-Fe2O3 Nanoparticle in NaY-Zeolite Matrix: Preparation, Characterization, and Heterogeneous Catalytic Epoxidation of Olefins, Inorg. Chim. Acta., 363:696-704 (2010).
[44] Lee J., Lee Y., Youn J.K., Na B., Yu T., Kim H., Lee S.M., Koo, Y.M., Kwak J.H., Park H. G., Chang H.N., Hwang M., Park J.G., Kim J., Hyeon T., Simple Synthesis of Functionalized Superparamagnetic Magnetite/Silica Core/Shell Nanoparticles and Their Application as Magnetically Separable High-Performance Biocatalysts, Small, 4:143-152 (2008).
[46] Mbaraka I.K., Radu D.R., Lin V.S., Shanks B.H., Organosulfonic Acid-Functionalized Mesoporous Silicas for the Esterification of Fatty Acid, J. Catal., 219:329-336 (2003).
[49] Astruc D., Lu F., Aranzaes J.R., Nanoparticles as Recyclable Catalysts: The Frontier between Homogeneous and Heterogeneous Catalysis, Angew. Chem. Int. Ed., 44:7852-7872 (2005).
[50] Noga E.J., Barthalmus G.T., Mitchell M.K., Cyclic Amines are Selective Cytotoxic Agents for Pigmented Cells, Cell Biol. Int. Rep., 10: 239-247 (1986).
[51] Awadallah F.M., Muller F., Lehmann A.H., Abadi A.H., Synthesis of Novel Lactam Derivatives and Their Evaluation as Ligands for the Dopamine Receptors, Leading to a D4-Selective Ligand, Bioorg. Med. Chem., 15: 5811-5818 (2007).
[52] Maleki B., Azarifar D., Veisi H., Hojati S.F., Salehabadi H., Nejat-Yami R., Wet 2,4,6-Trichloro-1,3,5-Triazine (TCT) as an Efficient Catalyst for the Synthesis of 2,4,6-triarylpyridines under Solvent-Free Conditions, Chin. Chem. Lett., 21: 1346-1349 (2010).
[53] Hazeri N., Marandi G., Maghsoodlou M.T., Khorassani S., Synthesis of 5H-pyrrolo[1,2-c]imidazoles by Intramolecular Wittig Reaction, Lett. Org. Chem., 8:12-15 (2011).
[54] Grasso S., DeSarro G., Micale N., Zappala M., Puia G., Baraldi M., Demicheli C.,  Synthesis and Anticonvulsant Activity of Novel and Potent 6,7-Methylenedioxyphthalazin-1(2H)-Ones, J. Med. Chem., 43:2851-2859 (2000).
[55] Watanabe N., Kabasawa Y., Takase Y., Matsukura M., Miyazaki K., Ishihara H., Kodama K., Adachi H.,
4-Benzylamino-1-chloro-6-substituted Phthalazines:  Synthesis and Inhibitory Activity Toward Phosphodiesterase 5, J. Med. Chem., 41:3367-3372 (1998).
[56] Nomoto Y., Obase H., Takai-Teranishi H.M., Nakamura J., Kubo K., Studies on Cardiotonic Agents. II.: Synthesis of Novel Phthalazine and 1, 2, 3-benzotriazine Derivatives, Chem. Pharm. Bull., 38: 2179-2183 (1990).
[57] Heine H.W., Baclawski M., Bonser S.M., Wachob G.D., Diaziridines 5. Reaction of Some 1-aroyl- and 1,2-Diacyldiaziridines, J. Org. Chem., 41:3229-3232 (1976).
[59] Sayyafi M., Seyyedhamzeh M., Khavasi H. R., Bazgir A., One-Pot, Three-Component Route to 2H-Indazolo [2, 1-b] Phthalazine-triones, Tetrahedron, 64:2375-2378 (2008).