
Iran. J. Chem. Chem. Eng. Research Article Vol. 39, No. 4, 2020 

 

Research Article                                                                                                                                                                  297 

 

 

A Neural Networks Model for Accurate Prediction  

of the Flash Point of Chemical Compounds 
 

 

Mirshahvalad, HamidReza; Ghasemiasl, Ramin*+ 

Department of Mechanical Engineering, West Tehran Branch, Islamic Azad University, Tehran, I.R. IRAN 

 

Raufi, Nahid 

Department of Chemical Engineering, South Tehran Branch, Islamic Azad University, Tehran, I.R. IRAN 

 

Malekzadeh dirin, Mehrdad 

Department of Mechanical Engineering, West Tehran Branch, Islamic Azad University, Tehran, I.R. IRAN 

 

 

ABSTRACT: Flashpoint is one of the most important flammability characteristics of chemical 

compounds. In the present study, we developed a neural network model for accurate prediction of  

the flashpoint of chemical compounds, using the number of hydrogen and carbon atoms, critical 

temperature, normal boiling point, acentric factor, and enthalpy of formation as model inputs. Using 

a robust strategy to efficiently assign neural network parameters and evaluate the authentic 

performance of the neural networks, we could achieve an accurate model that yielded average 

absolute relative errors of 0. 97, 0. 96, 0.99 and 1.0% and correlation coefficients of 0.9984, 0.9985, 

0.9981 and 0.9979 for the overall, training, validation and test sets, respectively.  These results are 

among the most accurate ever reported ones, to date. 
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INTRODUCTION 

Flash Point (FP) is one of the most important 

flammability properties of flammable liquids in evaluating 

their quality in logistic chains including storage and 

handling [1,2]. Compounds with lower FP can be flamed 

at lower temperatures and after ignition, the rate of flame 

spread over fuels with lower FP is faster which necessitates 

more fire safety considerations for them [3-6]. 

The aim of the present work is to develop a model  

to predict the closed cup flash point [7] of pure chemical 

compounds using neural networks. Neural networks are 

one of the most robust modeling tools which works based  

 

 

 

on machine learning and has already been used in modeling 

various properties of chemical compounds [8-11].  

FP is defined as the lowest temperature at which the vapors  

of a compound can be flamed by an ignition source. 

Developing accurate predictive models has always been  

an active area in science as it is highly required for many 

scientific and industrial applications. The number of 

compounds with undetermined properties are uncountable. 

Sometimes, experimental determination of those 

properties is not always possible, e.g. when the 

experimental measurement is dangerous, expensive or not  
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operationally feasible. For such cases, using reliable 

predictive models result in a considerable saving in time, 

effort and operational costs. 

The predicted FP of pure compounds is also used  

to evaluate the FP of mixture of chemical compounds 

[12, 13]. 

The models which predict FP of pure compounds  

can be generally divided into three main categories. The first 

category includes the Group Contribution Method (GCM) 

based models which relate a property to the constituting 

functional groups of a compound. The most accurate GCM 

based models use artificial neural networks to model  

the nonlinear relationship between the functional groups 

and FP [14-16]. A drawback of the classic GCM models is 

that they cannot distinguish between the properties of isomers 

which are characterized by the same functional groups.  

To overcome this limitation, a combination of Normal 

Boiling point (NBP) and functional groups as input 

variables was suggested in some studies 3, 17-19]. 

The second category of FP predictive models are 

Quantitative Structure Property Relationship (QSRP) 

models which use a more extensive set of structure related 

parameters, known as molecular descriptors,  to predict  

a property [20]. Similar to the GCM based models, the most 

successful QSPR models also exploit ANNs to map  

the nonlinear relationship between the molecular descriptors 

and FP [21-24]. 

The third category is empirical models which predict  

a property using other more readily accessible or more 

convenient to measure properties. The main advantage of 

the correlations compared to the GCM and QSPR models 

is that their higher accuracy and more straightforward 

application. The most successful empirical correlations 

typically exploit vapor-liquid equilibrium related 

properties e.g. Normal Boiling Point (NBP), critical 

temperature (𝑇𝑐), vapor pressure and enthalpy of 

vaporization (𝛥𝐻𝑣) as they represent the fuel volatility 

which is inversely proportional to the FP [25-28]. 

For example, Patil [29] and Hshieh [30] proposed  

a quadratic correlation between the NBP (K) and FP (K) 

as follows: 

2
F P a b N B P c N B P                                                     (1) 

where a, b and c are constants. Riazi and Daubert used 

NPB to predict FP by a nonlinear correlation in the [31]: 
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Catoire and Naudet proposed a correlation which 

predicts FP as a function of the NBP, number of carbons (n) 

and enthalpy of vaporization (𝛥𝐻𝑣) as follows [32]: 
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               (3) 

Gharagheizi et. al. proposed the following correlation 

to predict the FP using NBP, acentric factor (𝜔), critical 

temperature (𝑇𝑐) and critical pressure (𝑃𝑐) [33]: 

c
T
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In the present study, we introduce an empirical model 

for prediction of the FP using the number of carbon (nc) 

and hydrogen (𝑛𝐻) atoms, 𝑇𝑐  , NBP, enthalpy of formation 

of ideal gas state (Δ𝐻𝑓), and ω as model inputs.  

The relationships between the model inputs and FP is studied 

using feed forward neural networks, based on the strategies 

proposed by Alibakhshi 34. Except for the ideal gas 

enthalpy of formation and number of hydrogen atoms, 

other parameters have already been used in other FP 

predictive models, as discussed before. The data of Δ𝐻𝑓 

can be measured either experimentally or by available 

highly accurate theoretical approaches [35]. 

 

EXPERIMENTAL SECTION 

Dataset 

The reliable data of 𝑇𝑐, NBP, Δ𝐻𝑓 and ω for a large 

number of compounds from diverse families was supplied 

by the DIPPR 801 database 36. Considering the accuracy 

of the data indicated by DIPPR, only the experimentally 

determined data with the uncertainty of less than 3%  

were selected which resulted in a dataset of 393 compounds. 

The full list of the studied compounds is reported  

in the supporting materials. 
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Developing ANN models 

The correlation between the input variables and FP  

was studied via feedforward neural networks with one hidden 

layer. The reliable performance of ANNs as well as  

the efficient number of neurons, assigned transfer functions 

and training algorithm and ANN parameters were 

evaluated using the strategies proposed by Alibakhshi [34]. 

Based on that, the dataset was first randomly divided  

into three subsets, namely training, validation and test sets. 

The training data set containing randomly selected 75%  

of the compounds was used for training the ANNs and finding 

the optimum weight and bias constants of the networks. 

13% of the compounds were randomly selected for cross 

validation and the increase in their root mean square error 

for 6 successive iterations was used as a condition to stop 

the training. The rest 12% of the compounds were used for 

testing the performance of the ANN after training. 

Considering the size of the training dataset, we studies 

ANNs with 1-5 neurons in the hidden layer, where  

the upper bond was selected to fulfill the existence of roughly 

10 compounds per ANN parameter, as suggested  

by Alibakhshi [34]. The randomly division of dataset  

to training, validation and test sets were repeated 20 times 

and for each one, 20 different set of ANN parameters  

were randomly assigned and for each one, Levenberg-

Marquardt backpropagation (trainlm) and Gradient 

descent backpropagation (traingd) training algorithms and 

tangent sigmoid (tansig) and log-sigmoid (logsig) transfer 

functions were studied, using a Matlab code [53].  

The performance of the model was evaluated using 

Average Absolute Deviation (AAD), average absolute 

relative error (AARE%), and correlation coefficient (R) 

stated as follows: 
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Where 𝑦𝑖
𝑒𝑥𝑝

 and 𝑦𝑖
𝑝𝑟𝑒𝑑

 are the experimentally 

determined and predicted data of FP for the compound 𝑖 

respectively.  

In the next step, the ANNs for which the overall 

AARE% was lower than 1.5% were selected for further 

refinement and evaluation of their reliability and authentic 

performance, based on the method suggested by 

Alibakhshi 34. Accordingly, the ANNs selected in the next 

step were retrained again for the same initially assigned 

parameters but 20 different randomly division of  

the dataset and for each repeat, the t-test statistical method 

was used to compare the errors of the test and training sets. 

The ANNs for which in all of the 20 repeats the AARE% 

of the test and training dataset were not significantly 

different with 0.95 of significance level, were selected  

as the efficiently trained models with low risk of overfitting 

and the average of 20 repeats also were considered  

as the authentic performance of that model. 

 

RESULTS AND DISCUSSION 

Considering 20 different dataset division and for each 

one studying 20 different initialization, 2 different training 

algorithm, 2 different transfer function and 5 different 

assigned number of neurons for the hidden layer, a total 

number of 8000 ANNs were initially studied. Among 

initially studied ANNs, 3947 of them yielded an overall 

AARE% of lower than 1.5% and were selected  

for retraining using 20 different randomly assigned training, 

validation and test sets. 

After retraining in the next step, for only 495 out  

of 3947 models, the AARE% of the training and test sets 

were found to be not significantly different in all 20 repeats 

as evaluated by t-test statistical test. Those models  

were selected as the efficiently trained ANNs. Fig. 1 depicts 

the number of efficiently trained models based on the assigned 

number of hidden layer neurons.  

Among the efficiently trained models, the best result 

was observed for an ANN with 4 neurons in the hidden 

layer, trainlm training algorithm and logsig transfer 

function for the hidden layer. This model yielded AARE% 

of 0. 97, 0. 96, 0.99 and 1.0% and correlation coefficients 

of 0.9984, 0.9985, 0.9981 and 0.9979 for the overall, 

training, validation and test sets, respectively.  

For the selected ANN, the initially assigned and final 

optimized values for the weight and bias constant of each 

neuron are reported in Tables 1.  

According to the results, the new model for 67.9 %  

of compounds could predict the FP with absolute relative  
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Table 1: Initially assigned and final optimized weight and bias constants of the network. 

Initial weights (inputs to 

neuron 1) 
Initial weights (inputs to neuron 2) Initial weights (inputs to neuron 3) Initial weights (inputs to neuron 4) 

-0.54358 -0.65686 0.625666 0.326525 

0.097088 1.377202 0.635659 0.333176 

0.732389 0.13732 -1.00035 -0.09939 

0.880638 -0.27203 -0.62159 0.160549 

-0.3301 0.725605 0.635374 -0.59474 

1.177079 -0.40471 -0.72457 -1.5825 

Optimized weights (inputs to 

neuron 1) 

Optimized weights (inputs to 

neuron 2) 

Optimized weights (inputs to 

neuron 3) 

Optimized weights (inputs to 

neuron 4) 

-1.2879 1.777513 0.941787 -1.39325 

2.707046 0.154273 -0.27656 0.910771 

2.39006 -0.38348 0.137078 -0.42175 

0.498074 0.196007 0.755638 2.528354 

0.059078 -0.1885 0.399716 -1.14864 

0.617524 -0.037 0.084474 0.028263 

Initial weights (hidden to 

output) 

Optimized weights (hidden to 

output) 
Initial  bias (hidden layer) Optimized bias (hidden layer) 

-0.37353 -1.49238 1.763889 6.933026 

0.916688 2.271763 0.587963 -1.04681 

0.276929 1.542926 0.587963 1.866295 

-0.58372 -0.17034 1.763889 2.149752 

Initial bias (output layer) Optimized bias (output layer)   

-0.33376 -0.31287   

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: The number of efficiently trained ANNs for each 

assigned number of hidden layer neurons. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Distribution of compounds versus AARE% range. 

 

error less than 1%. The maximum AARE% with the value 

of 6.15% was observed for methane amine.  

The distribution of the compounds versus the relative error of 

the predicted FPs is depicted in Fig. 2 and Fig. 3 depicts 

the comparison of the predicted and experimentally 

determined data for the training, validation and test 

datasets. 

The results obtained via the proposed model  

are compared with the reported results for other most 

successful models in Table 2. As can be seen in Table 2, 

the new model provides lowest error compared to other 

available models. However, a more realistic comparison 

can be made only if different models are compared  

for a same dataset. 
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Table 2: Comparison of the results of the developed model with other accurate models reported in the literature. 

Model Method No. data AAD (k) AARE (%) Max. AARE (%) R 

The new model ANN 393 2.68 0.97 6.15 0.9984 

Albahri (2015)  14 GCM+ANN 375 3.55 1.1 6.62 0.9961 

Mathieu (2010)  38 Correlation 92 3.75 1.37 5.4 0.9922 

Pan et al. (2007)  23 QSPR 92 3.75 1.38 10.18 0.9907 

Alibakhshi et.al. (2017) 17 Semi- empirical 740 4.066 1.225 9.81 0.9934 

Alibakhshi et. al. (2015) 3 Semi- empirical 740 4.11 1.23 9.49 0.9935 

Rowley et al. (2011) 37 Correlation (𝛥𝐻𝑣+NBP) 1062 4.65 1.32 – – 

Mirshahvalad et. al. (2019) 
48 

QSPR+ANN 87 4.66 1.42 13.5 – 

Lazzús (2010)  15 GCM+ANN+ PSO 505 6.2 1.8 8.6 – 

Keshavarz and 

Ghanbarzadeh (2011) 39 
Correlation 173 6.35 2.21 12.8 0.9899 

Catoire &Naudet (2004) 32 Correlation (𝛥𝐻𝑣+NBP) 600 6.36 1.84 – – 

Gharagheizi et al. (2012) 33 Correlation (NBP,𝑃𝑐,𝑇𝑐, ω,𝑀𝑤) 1471 – 1.94 7.5 0.9935 

Mathieu and Alaime 
(2014)  40 

GCM 488 8.6 - - - 

Tetteh et al. (1999)  24 QSPR+ANN 400 9.59 – – – 

Rowley et al. (2010)  41 Correlation (𝛥𝐻𝑣+NBP) 1062 9.68 2.84 – – 

Hukkerikar et al. (2012) 42 GC+ 512 10.66 3.27 – 0.89 

Khaje and Modarres 
(2010)  45 

ANFIS 95 11.5 31.1 1500 0.986 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: Comparison of experimentally determined and predicted data for training, validation and test sets. 
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CONCLUSIONS 

In the present study, we developed an ANN model  

to predict the FP using the number of carbon (𝑛𝐶) and 

hydrogen (𝑛𝐻) atoms, critical temperature ( 𝑇𝑐  ), Normal 

Boiling Point (NBP), ideal gas enthalpy of formation (Δ𝐻𝑓), 

and acentric factor (ω). We used a robust scheme to t 

rain the ANNs and also to evaluate their authentic 

performance. The results show that the new model, 

compared to other available models, produces the lowest 

error for FP prediction and the applied efficient validation 

strategies allow using the predicted results confidently for 

practical applications.  
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